- #1
V0ODO0CH1LD
- 278
- 0
If I have a relation which is not only antisymmetric (##aRb\rightarrow{}\neg{}bRa##) but it also has a property that ##aRb\land{}bRc\rightarrow{}\neg{}cRa##. How can I be sure that this property holds for any string like that? So that ##aRb\land{}bRc\land{}cRd\rightarrow{}\neg{}dRa## without having to write it down forever?
I though writing down ##aRb\land{}bRc\rightarrow{}\neg{}cRa## was enough, but with just that I can't prove that ##cRd\rightarrow{}\neg{}dRa##. How can I define this property? Does it exist already?
I though writing down ##aRb\land{}bRc\rightarrow{}\neg{}cRa## was enough, but with just that I can't prove that ##cRd\rightarrow{}\neg{}dRa##. How can I define this property? Does it exist already?