MHB How can $j^{2}$ and $j^{2312}$ be related in complex number evaluations?

  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    Relationships
Drain Brain
Messages
143
Reaction score
0
can you help me how to formally present a solution to this problem

show that $j^2=-1$, $j^3=-j$, $j^4=1$ and $\frac{1}{j}=-j$, $\frac{1}{j^2}=-1$, $\frac{1}{j^3}=-j$, $\frac{1}{j^4}=1$. From the result of these, evaluate $j^{2312}$ and its reciprocal.

sure I can solve for $j^{2312}$ and its reciprocal, but the thing that I need help with is how can I relate the first part of the task to the last part of the problem given.

thanks!
 
Mathematics news on Phys.org
Drain Brain said:
can you help me how to formally present a solution to this problem

show that $j^2=-1$, $j^3=-j$, $j^4=1$ and $\frac{1}{j}=-j$, $\frac{1}{j^2}=-1$, $\frac{1}{j^3}=-j$, $\frac{1}{j^4}=1$. From the result of these, evaluate $j^{2312}$ and its reciprocal.

sure I can solve for $j^{2312}$ and its reciprocal, but the thing that I need help with is how can I relate the first part of the task to the last part of the problem given.

thanks!

you know $j^4=1$
2312 mod 4 = 0

hence $j^{2312} =1$

its reciprocal = $\frac{1}{1} = 1 $
 
The powers of $i$ form a 4 cycle:$1 \to i \to -1 \to -i \to 1 \to \cdots$

The reciprocals (multiplicative inverses) of powers of $i$ form the same cycle, IN REVERSE ORDER:

$1 =\dfrac{1}{1} \to -i = \dfrac{1}{i} \to -1 = \dfrac{1}{i^2} \to i = \dfrac{1}{i^3} \to 1 \cdots$

Suppose we want to find: $\dfrac{1}{i^n}$

and we know that $n = 4k + 3$.

then: $\dfrac{1}{i^n} = \dfrac{1}{i^{4k+3}} = \dfrac{1}{i^{4k}}\cdot\dfrac{1}{i^3}$$= \dfrac{1}{(i^4)^k}\cdot\dfrac{1}{i^3} = \dfrac{1}{1^k}\cdot\dfrac{1}{i^3}$$= 1\cdot\dfrac{1}{i^3} = \dfrac{1}{i^3} = \dfrac{i^4}{i^3} = i$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top