How can $j^{2}$ and $j^{2312}$ be related in complex number evaluations?

  • Context: MHB 
  • Thread starter Thread starter Drain Brain
  • Start date Start date
  • Tags Tags
    Relationships
Click For Summary
SUMMARY

The discussion focuses on evaluating complex powers, specifically $j^{2312}$, where $j$ represents the imaginary unit. It is established that $j^2 = -1$, $j^3 = -j$, and $j^4 = 1$, leading to the conclusion that $j^{2312} = 1$ due to the periodicity of powers of $j$ every four terms. The reciprocal of $j^{2312}$ is also calculated as 1. The discussion emphasizes the cyclical nature of powers of $j$ and their reciprocals.

PREREQUISITES
  • Understanding of complex numbers and the imaginary unit $j$
  • Knowledge of modular arithmetic, specifically modulo 4
  • Familiarity with the properties of powers and their reciprocals
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of complex numbers and their powers
  • Learn about modular arithmetic and its applications in complex evaluations
  • Explore the concept of cycles in powers of complex numbers
  • Investigate the relationship between complex numbers and their multiplicative inverses
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching algebra, and anyone interested in the properties of imaginary numbers and their applications.

Drain Brain
Messages
143
Reaction score
0
can you help me how to formally present a solution to this problem

show that $j^2=-1$, $j^3=-j$, $j^4=1$ and $\frac{1}{j}=-j$, $\frac{1}{j^2}=-1$, $\frac{1}{j^3}=-j$, $\frac{1}{j^4}=1$. From the result of these, evaluate $j^{2312}$ and its reciprocal.

sure I can solve for $j^{2312}$ and its reciprocal, but the thing that I need help with is how can I relate the first part of the task to the last part of the problem given.

thanks!
 
Physics news on Phys.org
Drain Brain said:
can you help me how to formally present a solution to this problem

show that $j^2=-1$, $j^3=-j$, $j^4=1$ and $\frac{1}{j}=-j$, $\frac{1}{j^2}=-1$, $\frac{1}{j^3}=-j$, $\frac{1}{j^4}=1$. From the result of these, evaluate $j^{2312}$ and its reciprocal.

sure I can solve for $j^{2312}$ and its reciprocal, but the thing that I need help with is how can I relate the first part of the task to the last part of the problem given.

thanks!

you know $j^4=1$
2312 mod 4 = 0

hence $j^{2312} =1$

its reciprocal = $\frac{1}{1} = 1 $
 
The powers of $i$ form a 4 cycle:$1 \to i \to -1 \to -i \to 1 \to \cdots$

The reciprocals (multiplicative inverses) of powers of $i$ form the same cycle, IN REVERSE ORDER:

$1 =\dfrac{1}{1} \to -i = \dfrac{1}{i} \to -1 = \dfrac{1}{i^2} \to i = \dfrac{1}{i^3} \to 1 \cdots$

Suppose we want to find: $\dfrac{1}{i^n}$

and we know that $n = 4k + 3$.

then: $\dfrac{1}{i^n} = \dfrac{1}{i^{4k+3}} = \dfrac{1}{i^{4k}}\cdot\dfrac{1}{i^3}$$= \dfrac{1}{(i^4)^k}\cdot\dfrac{1}{i^3} = \dfrac{1}{1^k}\cdot\dfrac{1}{i^3}$$= 1\cdot\dfrac{1}{i^3} = \dfrac{1}{i^3} = \dfrac{i^4}{i^3} = i$.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K