How can knowing parallax of a farther object help with finding a nearer object?

  • Thread starter Thread starter NanaToru
  • Start date Start date
  • Tags Tags
    Parallax
Click For Summary
Parallax is a method used to determine the distance of nearby objects by comparing their apparent position against a distant reference object, which is far enough away that its own parallax is negligible. When measuring the distance to a nearby object, such as a tree or star, the observer can move to a different vantage point and note the shift in position relative to the distant background. This shift allows for the calculation of the angle between the two positions, using trigonometry to derive the distance to the nearer object. In astronomy, this technique is applied to measure distances to stars by using the baseline of Earth's orbit and comparing nearby stars to distant ones. Understanding parallax helps in accurately determining distances in both terrestrial and astronomical contexts.
NanaToru
Messages
24
Reaction score
0
my professor kind of off-handedly said something along the lines of "Parallex can help you find the distance to a nearby object if you have a farther one as a reference." I think he means general, so I've been assuming that our farther object is so far that parallex shifts are ignored.

I mean, I know this means we can figure out that our baseline isn't big enough to help in determining the distance, but I kind of fail to see how having just a "reference" and not a distance to a farther object can help with finding the nearer object...

Thanks in advance.
 
Astronomy news on Phys.org


I think he means that the further object is what you are comparing the nearer object to. At large distances you can just say the object is stationary and get a direct reading of parallax on the nearer object. Even though you don't know the distance to the further object it just doesn't matter if you can't even measure the parallax because it's so small.
 
See, this is why I was confused by what he said. I wrote down what he said as "explain how parallex can help find the distance to a nearby object if you have a farther object as a reference."
 
By "farther object" he meant a background object that is far enough away that it doesn't have a perceptible parallax of its own.

Parallax is a shift in the apparent position of a foreground object relative to the background, due to the changing vantage point of the observer.

Say if you're a surveyor and you want to find the distance to a tree that is a few miles away. Observe where it appears relative to some background mountains that are tens or hundreds of miles away. Now strike off 100 paces in some direction perpendicular to your line of sight to the tree (or an even longer baseline if you need to be really accurate) and record where the tree appears relative to the background mountains again. Find the angle between these two apparent positions. Using trig, you can now calculate the distance to the tree.

In astronomy, the foreground object (tree) is a nearby star, at most a few kpc away (or farther if you can measure really small angles). The background objects are the background stars, so far away that they appear "fixed". The baseline is the diameter of Earth's orbit.
 
Last edited:
Hi, I saw someone with an avatar on a different forum that turns out to be the sombrero galaxy. AI says, too distant to know much about, aside from billions of starts, potentially tons of planets, and a supermassive black hole in the center. I find that setup fascinating, despite knowing close to nothing about the universe. So I ask: could anyone point me in the direction of, or provide information about this galaxy? I do not trust AI beyond general information, and I like to go pretty...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
7K