How can l prove that Newton's laws are time invariant?

AI Thread Summary
The discussion centers on proving the time invariance of Newton's laws using mathematical expressions. A solution x(t) is presented, leading to the consideration of y(-t) and its relationship to x(-t). The key question raised is how the second derivative of x(-t) relates to the function f(x(-t)). Participants suggest using LaTeX for clarity in mathematical notation. The conversation emphasizes the need for precise mathematical formulation to demonstrate the invariance effectively.
stefano77
Messages
20
Reaction score
8
Misplaced Homework Thread -- Moved to the Schoolwork forums by the Mentors
how can l prove Newton's law is time invariant?

if x (t) is a solution of dd/ddx x(t) = f(x(t)) then if l put y(-t) dd/ddt y(t)=dd/ddt x(-t). Now how dd/ddt x(-t) is equal to f(x(-t))?dd/ddt is second derivative with respect to time
 
Physics news on Phys.org
You've previously used LaTeX on this site. Can I suggest you repost the above using LaTeX? If you have forgotten the syntax there is a guide linked below the reply box. If the LaTeX does not render when you try to preview it, refresh the page while in preview and it should work (you may wish to copy your text to clipboard first as a safety measure).
 
  • Like
Likes topsquark and vanhees71
stefano77 said:
how can l prove Newton's law is time invariant?

if x (t) is a solution of dd/ddx x(t) = f(x(t)) then if l put y(-t) such that dd/ddt y(t)=dd/ddt x(-t). Now how dd/ddt x(-t) is equal to f(x(-t))?dd/ddt is second derivative with respect to time
##\dfrac{d^2}{dt^2} y(-t) = \dfrac{d^2}{dt^2} x(t)##

or equivalently
##\dfrac{d^2}{d(-t)^2} y(t) = \dfrac{d^2}{d(-t)^2} x(-t)##

Can you finish?

-Dan

Addendum: Please note my addition of "such that" to your original post. You needed something to separate those two expressions.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top