How can l prove that Newton's laws are time invariant?

AI Thread Summary
The discussion centers on proving the time invariance of Newton's laws using mathematical expressions. A solution x(t) is presented, leading to the consideration of y(-t) and its relationship to x(-t). The key question raised is how the second derivative of x(-t) relates to the function f(x(-t)). Participants suggest using LaTeX for clarity in mathematical notation. The conversation emphasizes the need for precise mathematical formulation to demonstrate the invariance effectively.
stefano77
Messages
20
Reaction score
8
Misplaced Homework Thread -- Moved to the Schoolwork forums by the Mentors
how can l prove Newton's law is time invariant?

if x (t) is a solution of dd/ddx x(t) = f(x(t)) then if l put y(-t) dd/ddt y(t)=dd/ddt x(-t). Now how dd/ddt x(-t) is equal to f(x(-t))?dd/ddt is second derivative with respect to time
 
Physics news on Phys.org
You've previously used LaTeX on this site. Can I suggest you repost the above using LaTeX? If you have forgotten the syntax there is a guide linked below the reply box. If the LaTeX does not render when you try to preview it, refresh the page while in preview and it should work (you may wish to copy your text to clipboard first as a safety measure).
 
  • Like
Likes topsquark and vanhees71
stefano77 said:
how can l prove Newton's law is time invariant?

if x (t) is a solution of dd/ddx x(t) = f(x(t)) then if l put y(-t) such that dd/ddt y(t)=dd/ddt x(-t). Now how dd/ddt x(-t) is equal to f(x(-t))?dd/ddt is second derivative with respect to time
##\dfrac{d^2}{dt^2} y(-t) = \dfrac{d^2}{dt^2} x(t)##

or equivalently
##\dfrac{d^2}{d(-t)^2} y(t) = \dfrac{d^2}{d(-t)^2} x(-t)##

Can you finish?

-Dan

Addendum: Please note my addition of "such that" to your original post. You needed something to separate those two expressions.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top