How Can Relativistic Space Travel Affect Aging and Distance Measurements?

Click For Summary
SUMMARY

This discussion focuses on relativistic space travel and its effects on aging and distance measurements, specifically through a series of problems involving a spaceship traveling to a Galactic Base 8 light years away. Key calculations include determining the required speed for a round trip within a year, the time elapsed on Earth, and the age difference between the captain and her twin sister. The discussion emphasizes the importance of understanding special relativity principles to solve these problems effectively.

PREREQUISITES
  • Understanding of special relativity concepts, including time dilation and length contraction.
  • Familiarity with relativistic kinematics and the Lorentz transformation equations.
  • Basic knowledge of velocity calculations in different reference frames.
  • Ability to perform calculations involving light years and relativistic speeds (e.g., 0.5c, 0.8c).
NEXT STEPS
  • Study the Lorentz transformation equations to understand how time and distance are affected by relativistic speeds.
  • Learn about time dilation effects in special relativity and how they apply to twin paradox scenarios.
  • Explore the concept of proper length and how it varies with relative motion.
  • Review practical applications of special relativity in astrophysics and space travel scenarios.
USEFUL FOR

Students of physics, astrophysicists, and anyone interested in the implications of relativistic travel on time and distance measurements will benefit from this discussion.

trans_pie
Messages
5
Reaction score
0
1. A 1000m long and 200m wide (when at rest) spaceship equipped with a chronometer is sent on a roundtrip
to their Galactic Base, 8 light years away.
(a) Astronauts start the trip after celebrating their captains 29th birthday and they want to make a round
trip and return to Earth on the eve of the captains 30th birthday. The ship travels with a constant velocity.
Calculate the required speed of the spaceship.
(b) According to the clocks on Earth, how long does this trip take?
(c) At which speed the age difference between the captain of the spaceship and her twin sister staying on
Earth will be minimal when the spaceship returns to Earth?
(d) How large is the distance from Earth to Galactic Base from the ships point of view (when the ship is at
the beginning of its journey but its speed is already equals the minimum speed calculated above)?
(e) Calculate the proper length of the ship when the speed of the ship is 0.5 c relative to Earth.
(f) Calculate the length and the width of the ship in a reference frame where the velocity of the ship is
directed from its tail to head and the speed is 0.5 c.

2. When traveling in space, a ship (length 1000m in its rest frame) passes an identical ship, which is at rest
relative to Earth. The captain of the moving ship decides to measure the speed of her ship. She looks out of
a window and uses her clock to measure the time between the moments when the head and the tail of the
other ship pass. The result of the measurement is 1 ìs. Calculate the speed of the “moving” ship relative to
Earth.

3. Two ships start simultaneously from Earth and move in directions, which are orthogonal to each other and
with equal velocities of 0.8 c. Calculate the distance between the ships as function of time in the rest frame
of one of the ships.

4. Two ships are moving toward each other with velocity of 0.7 c. At time zero in reference frame (reference
frame of Earth), Ship 1 nearly collides with Earth and Ship 2 is at the distance of 105 km from Earth.
(a)How long does it take according to the clock on Earth before the ships collide? What are the coordinates
of each ship at the collision?
(b)The clock in reference frame where Ship 1 is always at origin and at rest is set to zero when Ship 1 nearly
collides with Earth. What will the clock in show when the two ships collide?
(c)Calculate the distance between the two ships in when the Ship nearly collides with Earth.
(d)The distance to the other ship divided by the time until the collision (all measured in the reference frame
of Ship 1) gives the relative velocity of the two ships. Calculate the relative velocity and comment on the
value.
 
Physics news on Phys.org


You've listed 4 problems with innumerable "subproblems" and given no indication that you have tried anything on this yourself. Surely you don't expect people to do your homework for you!
 


Most of those problems look like straightforward special relativity problems.
 
These are all problems in relativistic kinematics, not momentum.

You must show your work to get help. Please review our posting rules, which are linked at the top of every page, and the https://www.physicsforums.com/showthread.php?t=94379".
 
Last edited by a moderator:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K