MHB How Can Reversing Digits Triple the Tens Place?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
the sum of the digits of a two digit number is 6, If the digits are reversed, the new number is tree times the original tens number. find the original number.

well just playing with the numbers I got 51 as the original number since 15 is 3 times 5
but doing the problem with equations ?

I tried

$t + u = 6$
$3u = 3t$
but this not got it.

thanks ahead
 
Last edited:
Mathematics news on Phys.org
Hello, karush!

The sum of the digits of a two-digit number is 6.
If the digits are reversed, the new number is three times the original ten's-digit.
Find the original number.
The original number is: $10t + u.$

We are told: .$t + u \,=\,6$ [1]

Also that: .$10u + t \:=\:3t \quad\Rightarrow\quad 10u \,=\,2t \quad\Rightarrow\quad t \,=\,5u$ [2]

Substitute [2] into [1]: .$5u + u \:=\:6 \quad\Rightarrow\quad 6u \,=\,6 \quad\Rightarrow\quad \boxed{u \,=\,1}$

Substiute into [2]: .$t \,=\,5(1) \quad\Rightarrow\quad \boxed{t \,=\,5}$Therefore, the original number is: .$10t + u \:=\:10(5) + 1 \:=\:51$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top