MHB How can the equation be modified to create a perfect ellipse on the graph?

  • Thread starter Thread starter highmath
  • Start date Start date
highmath
Messages
35
Reaction score
0
The graph of the equation:
cos(a) + cos(b) = cos(a + b)
show when the equation is valid.

The graph show an ellipses-like and not like a "perfect" ellipse. Why?
If I want to change the equation, what can I do to get a perfect ellipse?!
 
Mathematics news on Phys.org
This equation is discussed on Math.StackExchange. The accepted answer says that it is indeed not an ellipse, but the solutions to any equation $f(x,y)=\text{const}$ around $(x_0,y_0)$ looks like an ellipse for a smooth function $f$ if $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)=0$ and $$\begin{vmatrix}\frac{\partial^2f}{\partial x^2}f(x_0,y_0)&\frac{\partial^2f}{\partial x\partial y}f(x_0,y_0)\\\frac{\partial^2f}{\partial x\partial y}f(x_0,y_0)&\frac{\partial^2f}{\partial y^2}f(x_0,y_0)\end{vmatrix}>0$$ (i.e., if $(x_0,y_0)$ is an extremum point of $f$).
 
If you move the slider for this Desmos graph, you will see that the graph looks very like an ellipse until the parameter $a$ is quite close to $1$.

[DESMOS]advanced: {"version":5,"graph":{"squareAxes":false,"viewport":{"xmin":-1.3747197653766552,"ymin":-0.9204796366940666,"xmax":6.9623451644014835,"ymax":7.416585293084072}},"expressions":{"list":[{"type":"expression","id":"graph1","color":"#2d70b3","latex":"\\cos x\\ +\\ \\cos y\\ -\\ \\cos\\left(x+y\\right)\\ =\\ a","style":"SOLID"},{"type":"expression","id":"2","color":"#388c46","latex":"a=0","hidden":true,"sliderHardMin":true,"sliderHardMax":true,"sliderMin":"-3","sliderMax":"1","sliderInterval":"0.25","style":"SOLID"}]}}[/DESMOS]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
2K
Replies
6
Views
2K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
5
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
45
Views
4K
Back
Top