MHB How can this inequality be proven for positive values of a, b, c, and d?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The inequality $\sqrt {b^2+c^2}+\sqrt {a^2+c^2+d^2+2cd}>\sqrt {a^2+b^2+d^2+2ab}$ is to be proven for positive values of a, b, c, and d. A geometric approach is suggested as an elegant method for the proof. Participants express agreement on the effectiveness of this geometric perspective. The discussion emphasizes the importance of maintaining positivity in the variables involved. Overall, the focus is on finding a clear and rigorous proof of the stated inequality.
Albert1
Messages
1,221
Reaction score
0
prove the following

$a,b,c,d>0$

prove :$\sqrt {b^2+c^2}+\sqrt {a^2+c^2+d^2+2cd}>\sqrt {a^2+b^2+d^2+2ab}$
 
Mathematics news on Phys.org
My solution:

\[\sqrt{b^2+c^2}+\sqrt{a^2+(c+d)^2} > \sqrt{(a+b)^2+d^2}\\\\ b^2+c^2+a^2+(c+d)^2 +2\sqrt{b^2+c^2}\sqrt{a^2+(c+d)^2}> (a+b)^2+d^2\\\\ 2\sqrt{b^2+c^2}\sqrt{a^2+(c+d)^2}> (a+b)^2+d^2-a^2-b^2-c^2-(c+d)^2 \\\\ \sqrt{a^2b^2 +(b^2+c^2)(c+d)^2+a^2c^2} > ab-c^2-cd\]

The LHS $ > ab$, and the RHS $< ab$, because all four variables are positive reals. Thus the stated inequality holds.
 
Albert said:
prove the following

$a,b,c,d>0$

prove :$\sqrt {b^2+c^2}+\sqrt {a^2+c^2+d^2+2cd}>\sqrt {a^2+b^2+d^2+2ab}---(1)$
using geometry:
construct a rectangle with lengths $a+b,$ and $c+d$
Can you see ?$(1)$ automatically holds
 
I´m afraid not :( - please explain
 
lfdahl said:
I´m afraid not :( - please explain
ABCD is a rectangle ,CD=c+d=CQ+QD
BC=a+b=BP+PC
we have AP+PQ>AQ
by pythagorean theorem , and (1) holds
 
Albert said:
ABCD is a rectangle ,CD=c+d=CQ+QD
BC=a+b=BP+PC
we have AP+PQ>AQ
by pythagorean theorem , and (1) holds

Yes, of course! Very elegant! (Yes)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
872
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K