MHB How can trigonometric functions be simplified using specific values?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Trig
Click For Summary
To simplify $$\arcsin\sin\left(\frac{11\pi}{5}\right)$$, convert the angle to one within the range of $$-\frac{\pi}{2}$$ to $$\frac{\pi}{2}$$. This results in $$\sin\left(\frac{11\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)$$, leading to the conclusion that $$\arcsin\sin\left(\frac{11\pi}{5}\right) = \frac{\pi}{5}$$. The discussion confirms that $$\arcsin(\sin{t}) = t$$ holds true within its defined range, while a similar relationship for $$\arccos(\cos{t})$$ does not apply due to its different range. The clarification emphasizes the importance of understanding the ranges of these trigonometric functions for accurate simplification.
Guest2
Messages
192
Reaction score
0
$$\arcsin\sin\left(\frac{11\pi}{5}\right)$$

How do you simplify this?
 
Mathematics news on Phys.org
Guest said:
$$\arcsin\sin\left(\frac{11\pi}{5}\right)$$

How do you simplify this?

For us to help you better you should specify what you have tried.

now for the solution

$\arcsin\sin\left(t\right)$ shall lie between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

so convert $sin(\frac{11\pi}{5})$ to $sin(t)$ with t in $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
we get
$\sin(\frac{11\pi}{5})=sin(\frac{\pi}{5}) $
hence
$\arcsin\sin\left(\frac{11\pi}{5}\right)= \frac{\pi}{5}$
 
Thank you. So the idea is that $\arcsin(\sin{t}) = t$ when $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$? If so, is the same true for $\arccos(\cos{t})$?
 
Guest said:
Thank you. So the idea is that $\arcsin(\sin{t}) = t$ when $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$? If so, is the same true for $\arccos(\cos{t})$?

it is true for $\arctan(\tan{t})$ but not for $\arccos(\cos{t})$ because $\cos -t= \cos t$ and hence range for $\arccos(t)$ is $0$ to $\pi$
 
kaliprasad said:
it is true for $\arctan(\tan{t})$ but not for $\arccos(\cos{t})$ because $\cos -t= \cos t$ and hence range for $\arccos(t)$ is $0$ to $\pi$
Thank you, makes perfect sense!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
16
Views
2K
Replies
5
Views
1K
Replies
8
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K