MHB How Can Trigonometry Help Find an Obtuse Angle in a Circle Sector?

Needhelp2
Messages
17
Reaction score
0
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!
 

Attachments

  • diagram for maths.png
    diagram for maths.png
    1.9 KB · Views: 93
Mathematics news on Phys.org
You never learned how to solve for angles? (Wondering)

Let's say sin(x) = 0.5

Then, the critical value of x is $\dfrac{\pi}{6}$

The values of x will be = $\dfrac{\pi}{6}$, $\pi - \dfrac{\pi}{6}$, $\dfrac{\pi}{6} + 2\pi$, $3\pi - \dfrac{\pi}{6}$, etc

For sine, the values are in the 1st and 2nd quadrant, for tan, 1st and 3rd quadrant, and for cos, 1st and 4th quadrant.
 
Needhelp said:
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!

You are looking for the solutions of \(\sin(\theta))=0.64\). If you sketch the \(\sin\) curve you will see that for \(\theta\) in the range \(0\) to \(2\pi\) you have a solution at about \(\theta=0.694\), and another at \(\theta=\pi-0.694\). The first of these is an acute angle (about 36.6 degrees) and the other obtuse.

CB
 
Last edited:
thank you! I did know how to solve equations using sin and cos etc, but I didnt realize I could bring that knowledge to solve this problem!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top