MHB How Can Trigonometry Help Find an Obtuse Angle in a Circle Sector?

Needhelp2
Messages
17
Reaction score
0
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!
 

Attachments

  • diagram for maths.png
    diagram for maths.png
    1.9 KB · Views: 90
Mathematics news on Phys.org
You never learned how to solve for angles? (Wondering)

Let's say sin(x) = 0.5

Then, the critical value of x is $\dfrac{\pi}{6}$

The values of x will be = $\dfrac{\pi}{6}$, $\pi - \dfrac{\pi}{6}$, $\dfrac{\pi}{6} + 2\pi$, $3\pi - \dfrac{\pi}{6}$, etc

For sine, the values are in the 1st and 2nd quadrant, for tan, 1st and 3rd quadrant, and for cos, 1st and 4th quadrant.
 
Needhelp said:
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!

You are looking for the solutions of \(\sin(\theta))=0.64\). If you sketch the \(\sin\) curve you will see that for \(\theta\) in the range \(0\) to \(2\pi\) you have a solution at about \(\theta=0.694\), and another at \(\theta=\pi-0.694\). The first of these is an acute angle (about 36.6 degrees) and the other obtuse.

CB
 
Last edited:
thank you! I did know how to solve equations using sin and cos etc, but I didnt realize I could bring that knowledge to solve this problem!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top