How can we determine if D3xZ2 contains an element of order 6?

  • Context: Undergrad 
  • Thread starter Thread starter spacetimedude
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on determining whether the group D3xZ2 contains an element of order 6, particularly in comparison to the alternating group A4. It is established that A4 has order 12 and lacks a subgroup of order 6, while D3 (the dihedral group) has elements of order 3 and Z2 has elements of order 2, allowing the product (x,y) to yield an element of order 6. The conversation also touches on the isomorphism properties of groups like Z12 and Z6xZ2, clarifying that Z6xZ2 cannot contain an element of order 12 due to Lagrange's theorem.

PREREQUISITES
  • Understanding of group theory concepts such as orders of elements and subgroups.
  • Familiarity with specific groups like A4, D3, Z2, and their properties.
  • Knowledge of Lagrange's theorem and its implications for group orders.
  • Basic understanding of isomorphisms and direct products of groups.
NEXT STEPS
  • Study the properties of dihedral groups, specifically D3 and its elements.
  • Learn about the structure and elements of the alternating group A4.
  • Explore Lagrange's theorem in depth and its applications in group theory.
  • Investigate the Chinese remainder theorem and its implications for group isomorphisms.
USEFUL FOR

Mathematicians, particularly those specializing in abstract algebra, students studying group theory, and anyone interested in the properties of finite groups and their structures.

spacetimedude
Messages
87
Reaction score
1
I have a hard time trying to figure out these types of problems.
Usually, we are supposed to compare their orders, compare if they are both abelian, or see if one group has element of order n which the other group does not have.

So in this case, A4 has order 12 and D3xZ2 also has order 12. So this doesn't help.
An alternating group is non-abelian for n<=3 so A4 is non-abelian. D3 is non-abelian as well and the product of non-abelian to a group is non-abelian (?). So this doesn't help.
So what I'm thinking is, it's either "A4 has an element of order 4, but D3xZ2 does not", or "D3xZ2 has element order 6 but A4 does not".
So my question is, how do we find that D3xZ2 does or does not contain element of order 6? What if it was Z3xZ2 or S4xD3?

Are there any tricks to figuring out if a product of two groups has element of order n so that I can compare it with the other group, in this case A4?

Thank you
 
Physics news on Phys.org
##A_4## doesn't have a subgroup of order 6.
 
fresh_42 said:
##A_4## doesn't have a subgroup of order 6.
Okay, but how do we show that D3xZ2 has an element of order 6?
 
I assumed ##D_3## to denote the dihedral group. Then ##D_3## is a subgroup of ##D_3 \times \mathbb{Z}_2## per definition of the direct product. An isomorphism would map one subgroup to another without changing the number of elements. So ##D_3## (with six elements) cannot be isomorphically mapped into ##A_4##.
 
in a product group, the two factors act independently of each other, so if x is an element of D3 of order 3, and y is an element of Z2 of order 2, then (x,y) has order 6. try multiplying it by itself and see what happens. i.e. (x,y)^n = (x^n,y^n)...so...

one can also see what order are the elements of A4 by representing it as the rotations of a tetrahedron, (which permute the four vertices). Then one sees there are eight elements of order 3 (each fixing some vertex) and three elements of order 2, (each intertchanging two disjoint pairs of vertices).
 
mathwonk said:
in a product group, the two factors act independently of each other, so if x is an element of D3 of order 3, and y is an element of Z2 of order 2, then (x,y) has order 6. try multiplying it by itself and see what happens. i.e. (x,y)^n = (x^n,y^n)...so...

one can also see what order are the elements of A4 by representing it as the rotations of a tetrahedron, (which permute the four vertices). Then one sees there are eight elements of order 3 (each fixing some vertex) and three elements of order 2, (each intertchanging two disjoint pairs of vertices).
I understand that the order of product group is the product of the individual orders.

But what I'm confused about is, say, why is Z12 not isomorphic to Z6xZ2? They both have order 24, but why can we say that Z6xZ2 does not have element of order 12? I thought possible element of order divides the order of the group by Lagrange's theorem, so since |Z6xZ2|=24. doesn't Z6xZ2 have element of order 12?
Thanks
 
spacetimedude said:
I understand that the order of product group is the product of the individual orders.

But what I'm confused about is, say, why is Z12 not isomorphic to Z6xZ2? They both have order 24, but why can we say that Z6xZ2 does not have element of order 12? I thought possible element of order divides the order of the group by Lagrange's theorem, so since |Z6xZ2|=24. doesn't Z6xZ2 have element of order 12?
Thanks

No it doesn't. If we have an element ##(a,b) \in ℤ_6 \times ℤ_2## and addition as group operation then we get
$$(a,b)+(a,b)+(a,b)+(a,b)+(a,b)+(a,b) = ((a+a+a+a+a+a),(b+b)+(b+b)+(b+b)) = (0, 0+0+0) = (0,0) $$
that is, six is the highest possible order and hence no isomorphism to ##ℤ_{12}## can exist.

You can have different groups with the same number of elements. The smallest examples are ##ℤ_4## and ##ℤ_2^2 = ℤ_2 \times ℤ_2 ≅ D_2 ≅ V_4##. The last one, the dihedral group ##D_2## is also known as Klein's four-group ##V_4##. All elements are of order 2 there. The formal definition is, e.g. ##V_4 = <a,b | a^2 = b^2 = (ab)^2 = 1>##. You could write down both multiplication (or addition) tables of both groups with four elements as an exercise and look for the differences.

Edit: Here you can find a list of all small groups: https://en.wikipedia.org/wiki/List_of_small_groups

Edit 2: ##ℤ_{12} ≅ ℤ_3 \times ℤ_4## Here you get an element of order 12, because 3 and 4 are coprime. Therefore 12 is the least common multiple to get both components simultaneously and for sure to zero (as neutral element).
 
Last edited:
  • Like
Likes   Reactions: spacetimedude
fresh_42 said:
No it doesn't. If we have an element ##(a,b) \in ℤ_6 \times ℤ_2## and addition as group operation then we get
$$(a,b)+(a,b)+(a,b)+(a,b)+(a,b)+(a,b) = ((a+a+a+a+a+a),(b+b)+(b+b)+(b+b)) = (0, 0+0+0) = (0,0) $$
that is, six is the highest possible order and hence no isomorphism to ##ℤ_{12}## can exist.

You can have different groups with the same number of elements. The smallest examples are ##ℤ_4## and ##ℤ_2^2 = ℤ_2 \times ℤ_2 ≅ D_2 ≅ V_4##. The last one, the dihedral group ##D_2## is also known as Klein's four-group ##V_4##. All elements are of order 2 there. The formal definition is, e.g. ##V_4 = <a,b | a^2 = b^2 = (ab)^2 = 1>##. You could write down both multiplication (or addition) tables of both groups with four elements as an exercise and look for the differences.

Edit: Here you can find a list of all small groups: https://en.wikipedia.org/wiki/List_of_small_groups

Edit 2: ##ℤ_{12} ≅ ℤ_3 \times ℤ_4## Here you get an element of order 12, because 3 and 4 are coprime. Therefore 12 is the least common multiple to get both components simultaneously and for sure to zero (as neutral element).
Thank you. Does the coprime rule saying Z12 is isomorphic to Z4xZ3 work with groups other than Z (I can't really think of an example)?
 
spacetimedude said:
Thank you. Does the coprime rule saying Z12 is isomorphic to Z4xZ3 work with groups other than Z (I can't really think of an example)?
For cyclic groups ##ℤ_p## and ##ℤ_q## with coprime ##p,q## holds ##ℤ_p \times ℤ_q ≅ ℤ_{pq}## because they have single generators of appropriate orders.
I'm not sure what you meant by "work with other groups". There are many non-abelian finite groups or semidirect products of finite groups to build all possible variations of finite groups. The basic property of cyclic groups is that there is only one generator. Things are much different if there are more than one.
 
  • Like
Likes   Reactions: spacetimedude

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K