How can we find probability space and events

Click For Summary

Discussion Overview

The discussion revolves around finding a probability space and events \(A\), \(B\), and \(C\) such that the conditional probability \(P[C \mid A]\) is greater than \(P[C \mid A \cup B]\). Participants explore examples and calculations to illustrate this concept, focusing on the relationships between the events and their associated probabilities.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using genetic modifications as examples for events \(A\) and \(B\), with \(C\) representing the occurrence of a certain condition.
  • One participant calculates probabilities based on assumed values for \(P(A)\), \(P(B)\), \(P(A \mid C)\), \(P(B \mid C)\), and \(P(C)\), but questions the correctness of the results.
  • Another participant suggests that adjustments to the probabilities may be necessary to satisfy the inequality condition.
  • Participants reference an external example involving different events \(V_1\), \(V_2\), and \(K\) to demonstrate a case where the inequality holds, performing calculations to verify this.
  • There is a discussion about ensuring that all calculated probabilities remain valid (between 0 and 1) to maintain a valid probability function.

Areas of Agreement / Disagreement

Participants express uncertainty regarding the initial calculations and whether the proposed probabilities satisfy the required inequality. While some calculations are verified as correct, there remains a lack of consensus on the initial example's validity and the need for adjustments.

Contextual Notes

Participants acknowledge the importance of ensuring that all probabilities are valid and that the calculations must adhere to the properties of probability spaces. There are unresolved questions about the correctness of initial assumptions and calculations.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Give a probability space and events $A$, $B$ and $C$ such that $P [C \mid A]>P [C \mid A \cup B]$.So we want that $$\frac{P[C\cap A]}{P[A]}>\frac{P[C\cap (A\cup B)]}{P[A\cup B]}=\frac{P[(C\cap A)\cup (C\cap B)]}{P[A\cup B]}$$ But how can we find these events ? :unsure:
 
Physics news on Phys.org
mathmari said:
Give a probability space and events $A$, $B$ and $C$ such that $P [C \mid A]>P [C \mid A \cup B]$.

So we want that $$\frac{P[C\cap A]}{P[A]}>\frac{P[C\cap (A\cup B)]}{P[A\cup B]}=\frac{P[(C\cap A)\cup (C\cap B)]}{P[A\cup B]}$$ But how can we find these events ?

Hey mathmari!

It looks as if we're supposed to find an example where the events could be anything.
For instance $A$ and $B$ could be genetic modifications, and $C$ could be whether a certain condition occurs.
Either way, we would need to assign example probabilities to the events and their intersections such that the given expression holds. 🤔
 
Klaas van Aarsen said:
It looks as if we're supposed to find an example where the events could be anything.
For instance $A$ and $B$ could be genetic modifications, and $C$ could be whether a certain condition occurs.
Either way, we would need to assign example probabilities to the events and their intersections such that the given expression holds. 🤔

So we consider $A$ to be the event that the genetic modification A occurs and $B$ to be the event that the genetic modification B occurs.
Let $P(A)=0.30$, $P(B)=0.40$, $P(A\mid C)=0.25$, $P(B\mid C)=0.35$, $P(C)=0.70$ $P(A\cap B)=0$ and so $P(A\cup B)=P(A)+P(B)=0.30+0.40=0.70$.

Then we have $P(C\cap A)=P(A\mid C)\cdot P(C)=0.25\cdot 0.70=0.175$, $P(C\cap B)=P(B\mid C)\cdot P(C)=0.35\cdot 0.70=0.245$ and $P[(C\cap A)\cup (C\cap B)]=P[C\cap A]+P[C\cap B]=0.175+0.245=0.42$ and so we get at the left side $$\frac{P[C\cap A]}{P[A]}=\frac{0.175}{0.30}\approx 0.583$$ and at the right side $$ \frac{P[C\cap (A\cup B)]}{P[A\cup B]}=\frac{P[(C\cap A)\cup (C\cap B)]}{P[A\cup B]} =\frac{0.42}{0.70} =0.6$$ If all the calculations are correct then the probabilities that I tokk are wrong... :unsure:
 
mathmari said:
So we consider $A$ to be the event that the genetic modification A occurs and $B$ to be the event that the genetic modification B occurs.
Let $P(A)=0.30$, $P(B)=0.40$, $P(A\mid C)=0.25$, $P(B\mid C)=0.35$, $P(C)=0.70$ $P(A\cap B)=0$ and so $P(A\cup B)=P(A)+P(B)=0.30+0.40=0.70$.

Then we have $P(C\cap A)=P(A\mid C)\cdot P(C)=0.25\cdot 0.70=0.175$, $P(C\cap B)=P(B\mid C)\cdot P(C)=0.35\cdot 0.70=0.245$ and $P[(C\cap A)\cup (C\cap B)]=P[C\cap A]+P[C\cap B]=0.175+0.245=0.42$ and so we get at the left side $$\frac{P[C\cap A]}{P[A]}=\frac{0.175}{0.30}\approx 0.583$$ and at the right side $$ \frac{P[C\cap (A\cup B)]}{P[A\cup B]}=\frac{P[(C\cap A)\cup (C\cap B)]}{P[A\cup B]} =\frac{0.42}{0.70} =0.6$$ If all the calculations are correct then the probabilities that I tokk are wrong...
Yep. It's the wrong way around, so we probably need to increase one probability and decrease another to match. 🤔

Btw, if everything would be correct, than the probability of each possible intersection must also be between $0$ and $1$, since otherwise we don't have a valid probability function. 🤔
 
When we consider the example https://mathhelpboards.com/threads/probability-chicken-legs.29067/ with $A=V_1$, $B=V_2$, $C=K$ then we get the following :

$P(V_1)=0.20$, $P(V_2)=0.10$, $P(K)=0.21$
$P(K\mid V_1)=0.80$
$P(K\mid V_1\cup V_2)$
$P(K\mid (V_1\cup V_2))=\frac{P(K\cap (V_1\cup V_2))}{P(V_1\cup V_2)}=\frac{P((K\cap V_1)\cup (K\cap V_2))}{P(V_1\cup V_2)}=\frac{P(K\cap V_1)+P(K\cap V_2)}{0.30}=\frac{0.16+0.04}{0.30}=\frac{0.20}{0.30}\approx 0.67$

So the inequality holds, right? :unsure:
 
mathmari said:
When we consider the example https://mathhelpboards.com/threads/probability-chicken-legs.29067/ with $A=V_1$, $B=V_2$, $C=K$ then we get the following :

$P(V_1)=0.20$, $P(V_2)=0.10$, $P(K)=0.21$
$P(K\mid V_1)=0.80$
$P(K\mid V_1\cup V_2)$
$P(K\mid (V_1\cup V_2))=\frac{P(K\cap (V_1\cup V_2))}{P(V_1\cup V_2)}=\frac{P((K\cap V_1)\cup (K\cap V_2))}{P(V_1\cup V_2)}=\frac{P(K\cap V_1)+P(K\cap V_2)}{0.30}=\frac{0.16+0.04}{0.30}=\frac{0.20}{0.30}\approx 0.67$

So the inequality holds, right?
Yep. Looks good to me. (Nod)
 
Klaas van Aarsen said:
Yep. Looks good to me. (Nod)

Great! Thank you! (Sun)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
10
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
951
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 62 ·
3
Replies
62
Views
4K
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K