Delta² said:
The way you stating this makes me think like "Oh the microwave photons transfer less energy to the polar molecules" but I don't think its that ( I am not sure anyway if you mean this), it is that the polar molecules need more energy (more photons or more energy per photon) to get them moving.
I imagine that it's like this.
Consider a block on the ground.
When we push against it, it starts moving.
That is, we applied work on it, and now it has more energy.
Now consider a block that is stuck somehow.
We push against it, but it cannot move. Therefore we did not apply work and it did not gain energy.
Hmm... I guess we'll have to push real hard so that something breaks before we can actually apply work to it. And then it should get the full energy. ;)
Still, continuing the analogy, if we simultaneously push both loose blocks and stuck blocks, the loose blocks will get all the energy won't they?
collinsmark said:
I should mention that liquids do not need to be polar to absorb microwaves. There are other modes of energy transfer. For example, oil molecules are not polar. But those molecules are long and complicated and they can vibrate in several modes, many of which are at microwave frequencies. Given the complicated nature of these molecules in relationship to nearby oil molecules, and even other atoms in a given molecule, their vibrational modes are rarely coherent with each other. Since the long and twisted oil molecules don't all vibrate in unison, they are bound to absorb the microwave energy in a thermodynamically irreversible process too.
Aha! So mixing the water with a couple of drops of oil might have the same effect as mixing it with alcohol?
That sounds as if that won't hit the brick wall of food and tax regulations.
If hope it freezes without fully separating.
(Running to the fridge and putting 3 new glasses in it.)
EDIT: Yep. That seems to be a problem. I can't seem to mix oil and water without it separating again within seconds.