MHB How can we prove the convergence of recursive defined sequences?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

a) Check the convergence of the sequence $a_n=\left (\frac{n+2000}{n-2000}\right)^n$, $n>1$. If it converges calculate the limit.
b) Check the convergence of the recursive defined sequence $a_n=\frac{a_{n-1}}{a_{n-1}+2}$, $n>1$, with $a_1=1$.For a) we have $$a_n=\left (1+\frac{4000}{n-2000}\right) ^{n-2000}\left (1+\frac{4000}{n-2000}\right) ^{2000}\to e^{4000}$$ Having found the limit means that the sequence is also convergent, right? but could we have shown the convergence also in an other way?For b) when we calculate some terms we see the sequence is decreasing and we can prove that using induction. It also holds that $a_n>0$. This means that the sequence converges, right?

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
a) Check the convergence of the sequence $a_n=\left (\frac{n+2000}{n-2000}\right)^n$, $n>1$. If it converges calculate the limit.

For a) we have $$a_n=\left (1+\frac{4000}{n-2000}\right) ^{n-2000}\left (1+\frac{4000}{n-2000}\right) ^{2000}\to e^{4000}$$ Having found the limit means that the sequence is also convergent, right? but could we have shown the convergence also in an other way?

Hey mathmari!

That works. (Nod)

We may want to mention which propositions we're using to conclude it though.
It's easy to make mistakes if we take the limits of parts of an expression after all. 🧐

I wouldn't immediately know a different way to do it, other than making sure the steps are correct.

mathmari said:
b) Check the convergence of the recursive defined sequence $a_n=\frac{a_{n-1}}{a_{n-1}+2}$, $n>1$, with $a_1=1$.
For b) when we calculate some terms we see the sequence is decreasing and we can prove that using induction. It also holds that $a_n>0$. This means that the sequence converges, right?
Yep. It follows from the monotone convergence theorem. (Nod)
 
Klaas van Aarsen said:
That works. (Nod)

We may want to mention which propositions we're using to conclude it though.
It's easy to make mistakes if we take the limits of parts of an expression after all. 🧐

I wouldn't immediately know a different way to do it, other than making sure the steps are correct.Yep. It follows from the monotone convergence theorem. (Nod)

Great! Thank you! (Sun)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
1
Views
2K
Replies
3
Views
2K