How can we solve a radical equation without using a calculator?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
Click For Summary

Discussion Overview

The discussion revolves around solving a radical equation without the use of a calculator, specifically focusing on the expression involving cube roots and quadratic integers. Participants explore algebraic manipulations and theoretical approaches to simplify the problem.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • Some participants propose that the expression \(\left(1\pm\sqrt{5}\right)^3\) can be simplified to show equivalence with \(2\pm\sqrt{5}\).
  • There is a suggestion to substitute \(\left(\frac{1\pm\sqrt{5}}{2}\right)^3\) into the equation \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\) to explore further.
  • One participant expresses concern about the tediousness of taking the cube root of both sides of the equation and questions the algebra involved.
  • Another participant elaborates on the process of expressing the cube root in terms of \(a+b\sqrt{5}\) and sets up equations based on this assumption, noting the complexity of the resulting algebra.
  • Participants discuss the use of the norm in the theory of quadratic integers to simplify the problem, leading to a cubic equation that can be solved for \(a\) and \(b\).
  • One participant confirms that finding the cube root is indeed tedious and shares the derived expressions for \(a\) and \(b\) based on their calculations.

Areas of Agreement / Disagreement

Participants express a shared understanding of the complexity involved in solving the radical equation, but there is no consensus on the best approach or whether the algebraic manipulations are necessary. Multiple viewpoints on the methods to tackle the problem remain present.

Contextual Notes

The discussion includes assumptions about working within the Ring of Quadratic Integers and the implications of using norms, which may not be universally accepted or understood by all participants.

mathdad
Messages
1,280
Reaction score
0
Show that the RHS = LHS without using a calculator.

View attachment 7807
 

Attachments

  • MathMagic180217_2.png
    MathMagic180217_2.png
    1.9 KB · Views: 121
Mathematics news on Phys.org
I would observe that:

$$\left(1\pm\sqrt{5}\right)^3=1\pm3\sqrt{5}+3\cdot5\pm5\sqrt{5}=16\pm8\sqrt{5}=8\left(2\pm\sqrt{5}\right)$$

Hence:

$$2\pm\sqrt{5}=\left(\frac{1\pm\sqrt{5}}{2}\right)^3$$
 
MarkFL said:
I would observe that:

$$\left(1\pm\sqrt{5}\right)^3=1\pm3\sqrt{5}+3\cdot5\pm5\sqrt{5}=16\pm8\sqrt{5}=8\left(2\pm\sqrt{5}\right)$$

Hence:

$$2\pm\sqrt{5}=\left(\frac{1\pm\sqrt{5}}{2}\right)^3$$

What would the algebra look like if I take the cube root on both sides? Is it tedious?
 
Last edited:
That's not necessary. Put $\left(\frac{1\pm\sqrt5}{2}\right)^3$ instead of $2\pm\sqrt5$ in $\sqrt[3]{2+\sqrt5}+\sqrt[3]{2-\sqrt5}=1$. What do you get?

If you mean taking the cube root of both sides of $2\pm\sqrt{5}=\left(\frac{1\pm\sqrt{5}}{2}\right)^3$, you'd arrive at the solution.
 
RTCNTC said:
What would the algebra look like if I take the cube root on both sides? Is it tedious?

Let's assume that the cube root is in the same Ring of Quadratic Integers.
That is, we can write the cube root $\sqrt[3]{2\pm \sqrt 5}$ as $a+b\sqrt 5$.

Then to take the cube root, we can solve a and b from:
$$(a+b\sqrt 5)^3 = 2 \pm \sqrt 5$$
We have:
$$(a+b\cdot\sqrt 5)^3 = a^3+3a^2b\cdot\sqrt 5 + 3ab^2\cdot 5 + b^2\cdot 5\sqrt 5 = a(a^2+15b^2) + b(3a^2 + 5b^2)\sqrt 5$$
So:
$$\begin{cases}a(a^2+15b^2) = 2 \\ b(3a^2 + 5b^2) = \pm 1
\end{cases} \tag 1$$
Unfortunately this is quite tedious to solve. (Worried)

Luckily we can draw on the theory of Quadratic Integers to make it a bit easier.
That's by using the norm $N$, which is defined as $N(x+y\sqrt 5)=x^2-5y^2$.
The norm $N(a+b\sqrt 5)$, when raised to the power of 3, must then be equal to $N(2\pm \sqrt 5)$.
Thus, we get the additional identity:
$$N(a+b\sqrt 5)^3 = N(2\pm \sqrt 5) \quad\Rightarrow\quad (a^2 - 5b^2)^3 = 2^2 - 5(\pm 1)^2 = -1$$
This implies:
$$a^2-5b^2 = -1 \quad\Rightarrow\quad 5b^2 = a^2+1 \tag 2$$
Substituting in (1) yields:
$$a(a^2+3\cdot 5b^2)= a(a^2+3(a^2+1))=4a^3+3a=2 \quad\Rightarrow\quad 4a^3+3a-2=0$$

Next, from the Rational Root Theorem we know that any rational root must be one of:
$$\pm 2, \pm 1, \pm\frac 12, \pm\frac 14$$
And indeed, $a=\frac 12$ fits.
Substituting back into (2) yields:
$$5b^2 = \Big(\frac 12\Big)^2+1 = \frac 54 \quad\Rightarrow\quad b=\pm\frac 12$$

So we find that:
$$\sqrt[3]{2\pm \sqrt 5} = \frac 12 \pm \frac 12 \sqrt 5 \tag 3$$TL;DR: Yep, it's tedious to take the cube root. (Angel)
 
I like Serena said:
Let's assume that the cube root is in the same Ring of Quadratic Integers.
That is, we can write the cube root $\sqrt[3]{2\pm \sqrt 5}$ as $a+b\sqrt 5$.

Then to take the cube root, we can solve a and b from:
$$(a+b\sqrt 5)^3 = 2 \pm \sqrt 5$$
We have:
$$(a+b\cdot\sqrt 5)^3 = a^3+3a^2b\cdot\sqrt 5 + 3ab^2\cdot 5 + b^2\cdot 5\sqrt 5 = a(a^2+15b^2) + b(3a^2 + 5b^2)\sqrt 5$$
So:
$$\begin{cases}a(a^2+15b^2) = 2 \\ b(3a^2 + 5b^2) = \pm 1
\end{cases} \tag 1$$
Unfortunately this is quite tedious to solve. (Worried)

Luckily we can draw on the theory of Quadratic Integers to make it a bit easier.
That's by using the norm $N$, which is defined as $N(x+y\sqrt 5)=x^2-5y^2$.
The norm $N(a+b\sqrt 5)$, when raised to the power of 3, must then be equal to $N(2\pm \sqrt 5)$.
Thus, we get the additional identity:
$$N(a+b\sqrt 5)^3 = N(2\pm \sqrt 5) \quad\Rightarrow\quad (a^2 - 5b^2)^3 = 2^2 - 5(\pm 1)^2 = -1$$
This implies:
$$a^2-5b^2 = -1 \quad\Rightarrow\quad 5b^2 = a^2+1 \tag 2$$
Substituting in (1) yields:
$$a(a^2+3\cdot 5b^2)= a(a^2+3(a^2+1))=4a^3+3a=2 \quad\Rightarrow\quad 4a^3+3a-2=0$$

Next, from the Rational Root Theorem we know that any rational root must be one of:
$$\pm 2, \pm 1, \pm\frac 12, \pm\frac 14$$
And indeed, $a=\frac 12$ fits.
Substituting back into (2) yields:
$$5b^2 = \Big(\frac 12\Big)^2+1 = \frac 54 \quad\Rightarrow\quad b=\pm\frac 12$$

So we find that:
$$\sqrt[3]{2\pm \sqrt 5} = \frac 12 \pm \frac 12 \sqrt 5 \tag 3$$TL;DR: Yep, it's tedious to take the cube root. (Angel)

Wonderfully informative reply. Thanks.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
Replies
10
Views
3K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K