mathdad
- 1,280
- 0
MarkFL said:I would observe that:
$$\left(1\pm\sqrt{5}\right)^3=1\pm3\sqrt{5}+3\cdot5\pm5\sqrt{5}=16\pm8\sqrt{5}=8\left(2\pm\sqrt{5}\right)$$
Hence:
$$2\pm\sqrt{5}=\left(\frac{1\pm\sqrt{5}}{2}\right)^3$$
RTCNTC said:What would the algebra look like if I take the cube root on both sides? Is it tedious?
I like Serena said:Let's assume that the cube root is in the same Ring of Quadratic Integers.
That is, we can write the cube root $\sqrt[3]{2\pm \sqrt 5}$ as $a+b\sqrt 5$.
Then to take the cube root, we can solve a and b from:
$$(a+b\sqrt 5)^3 = 2 \pm \sqrt 5$$
We have:
$$(a+b\cdot\sqrt 5)^3 = a^3+3a^2b\cdot\sqrt 5 + 3ab^2\cdot 5 + b^2\cdot 5\sqrt 5 = a(a^2+15b^2) + b(3a^2 + 5b^2)\sqrt 5$$
So:
$$\begin{cases}a(a^2+15b^2) = 2 \\ b(3a^2 + 5b^2) = \pm 1
\end{cases} \tag 1$$
Unfortunately this is quite tedious to solve. (Worried)
Luckily we can draw on the theory of Quadratic Integers to make it a bit easier.
That's by using the norm $N$, which is defined as $N(x+y\sqrt 5)=x^2-5y^2$.
The norm $N(a+b\sqrt 5)$, when raised to the power of 3, must then be equal to $N(2\pm \sqrt 5)$.
Thus, we get the additional identity:
$$N(a+b\sqrt 5)^3 = N(2\pm \sqrt 5) \quad\Rightarrow\quad (a^2 - 5b^2)^3 = 2^2 - 5(\pm 1)^2 = -1$$
This implies:
$$a^2-5b^2 = -1 \quad\Rightarrow\quad 5b^2 = a^2+1 \tag 2$$
Substituting in (1) yields:
$$a(a^2+3\cdot 5b^2)= a(a^2+3(a^2+1))=4a^3+3a=2 \quad\Rightarrow\quad 4a^3+3a-2=0$$
Next, from the Rational Root Theorem we know that any rational root must be one of:
$$\pm 2, \pm 1, \pm\frac 12, \pm\frac 14$$
And indeed, $a=\frac 12$ fits.
Substituting back into (2) yields:
$$5b^2 = \Big(\frac 12\Big)^2+1 = \frac 54 \quad\Rightarrow\quad b=\pm\frac 12$$
So we find that:
$$\sqrt[3]{2\pm \sqrt 5} = \frac 12 \pm \frac 12 \sqrt 5 \tag 3$$TL;DR: Yep, it's tedious to take the cube root. (Angel)