MHB How Can You Determine the Sum of an Infinite Geometric Series?

  • Thread starter Thread starter hatelove
  • Start date Start date
  • Tags Tags
    Estimate
hatelove
Messages
101
Reaction score
1
i.e.

\sum_{n = 0}^{\infty}\frac{1}{2^{n}} = \frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \frac{1}{2^{5}} + \frac{1}{2^{6}} + \cdots = ~1.99138889...

Is there a way you can know this solution is 2 without having to perform all of the calculations I did to find which number the sums are approaching? And is there a general method for questions like these to find the solution without having to perform a lot of calculations?
 
Mathematics news on Phys.org
daigo said:
i.e.

\sum_{n = 0}^{\infty}\frac{1}{2^{n}} = \frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \frac{1}{2^{5}} + \frac{1}{2^{6}} + \cdots = ~1.99138889...

Is there a way you can know this solution is 2 without having to perform all of the calculations I did to find which number the sums are approaching? And is there a general method for questions like these to find the solution without having to perform a lot of calculations?

There is no general method to determine the sum of a convergent series, it is a result of computability theory that almost all such series are not even computable. This one however is well behaved and its sum can be found using the method sugested by Ackbach

CB
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top