MHB How Can You Prove the Trigonometric Identity Cos^6A+Sin^6A=1-3Sin^2ACos^2A?

AI Thread Summary
The discussion focuses on proving the trigonometric identity Cos^6A + Sin^6A = 1 - 3Sin^2A Cos^2A. Participants explore the left-hand side by rewriting it as a sum of cubes and applying the Pythagorean identity. They derive that Cos^6A + Sin^6A can be expressed in terms of Cos^4A and Sin^4A, leading to the conclusion that it simplifies to 1 - 3Sin^2A Cos^2A. The conversation emphasizes the importance of expanding and manipulating the expressions correctly to validate the identity. Ultimately, the proof hinges on understanding and applying fundamental trigonometric identities effectively.
Silver Bolt
Messages
8
Reaction score
0
Prove $Cos^6A+Sin^6A=1-3 \hspace{0.2cm}Sin^2 A\hspace{0.02cm}Cos^2A$

So far,

$Cos^6A+Sin^6A=1-3 \hspace{0.2cm}Sin^2 A\hspace{0.02cm}Cos^2A$
$L.H.S=(Cos^2A)^3+(Sin^2A)^3$
$=(Cos^2A+Sin^2A)(Cos^4A-Cos^2ASin^2A+Sin^4A)$
$=\underbrace{(Cos^2A+Sin^2A)}_{\text{1}}(Cos^4A-Cos^2ASin^2A+Sin^4A) $
$=1(Cos^4A-Cos^2ASin^2A+Sin^4A)$

Can someone help from here?
 
Mathematics news on Phys.org
$$\sin^4(A)-\sin^2(A)\cos^2(A)+\cos^4(A)=(\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$$
 
greg1313 said:
$$\sin^4(A)-\sin^2(A)\cos^2(A)+\cos^4(A)=(\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$$

A little explanation on how did that -3 come in $\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$
 
Expand $(\sin^2(A)+\cos^2(A))^2$. The result should answer your question.
 
$\sin^4(A)-\sin^2(A)\cos^2(A)+\cos^4(A)=(\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$

greg1313 said:
Expand $(\sin^2(A)+\cos^2(A))^2$. The result should answer your question.

This part can be rewritten as

$\sin^4(A)+\cos^4(A)-\sin^2(A)\cos^2(A)=(\sin^2(A)+\cos^2(A))^2-\sin^2(A)\cos^2(A)$

Expanding $(\sin^2(A)+\cos^2(A))^2=\sin^4(A)+2\sin^2(A)\cos^2(A)+cos^4(A)$

Now using it instead of$ (\sin^2(A)+\cos^2(A))^2$

$\sin^4(A)+2\sin^2(A)\cos^2(A)+cos^4(A)-\sin^2(A)\cos^2(A)=\sin^4(A)+\sin^2(A)\cos^2(A)+cos^4(A)$

which is not the desired answer.Where have I gone wrong?
 
Silver Bolt said:
$\sin^4(A)-\sin^2(A)\cos^2(A)+\cos^4(A)=(\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$

Start with the line above and expand the RHS.
 
An alternate approach would be to factor the LHS as the sum of two cubes:

$$\cos^6(A)+\sin^6(A)=\left(\cos^2(A)+\sin^2(A)\right)\left(\cos^4(A)-\cos^2(A)\sin^2(A)+\sin^4(A)\right)$$

Now, for the first factor on the RHS, we can apply a Pythagorean identity to state:

$$\cos^6(A)+\sin^6(A)=\cos^4(A)-\cos^2(A)\sin^2(A)+\sin^4(A)$$

We can also use this same Pythagorean identity to state:

$$1=\left(\cos^2(A)+\sin^2(A)\right)^2=\cos^4(A)+2\cos^2(A)\sin^2(A)+\sin^4(A)\implies \cos^4(A)+\sin^4(A)=1-2\cos^2(A)\sin^2(A)$$

And so, there results:

$$\cos^6(A)+\sin^6(A)=1-3\cos^2(A)\sin^2(A)$$
 
Back
Top