MHB How did I finally solve for the summation of n terms?

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Summation
juantheron
Messages
243
Reaction score
1
Find the sum of n terms:

1+2(1-a) +3(1-a)(1-2a)...k(1-a)(1-2a)...\{1-(k-1)a\}
 
Mathematics news on Phys.org
jacks said:
Find the sum of n terms:

1+2(1-a) +3(1-a)(1-2a)...k(1-a)(1-2a)...\{1-(k-1)a\}

Let $\displaystyle p_k(a) = \sum_{n=1}^k n(1-a)(1-2a)\cdots\bigl(1-(n-1)a\bigr)$. Once you know the formula for $p_k(a)$, you can prove it by induction. The formula is
[sp]$$p_k(a) = \frac{1-(1-a)(1-2a)\cdots(1-ka)}a.$$[/sp]
 
Hi Opalg, I was wondering if I'm allowed to ask any follow-up question here because obviously I'm not the OP who started it.
Anyway, I will proceed and please forgive and ignore me if, by any chance, I have put my foot into my mouth by asking the following question.(Worried)


Opalg said:
Let $\displaystyle p_k(a) = \sum_{n=1}^k n(1-a)(1-2a)\cdots\bigl(1-(n-1)a\bigr)$. Once you know the formula for $p_k(a)$, you can prove it by induction. The formula is
[sp]$$p_k(a) = \frac{1-(1-a)(1-2a)\cdots(1-ka)}a.$$[/sp]

I don't quite understand how one should be able to 'guess' or should one need some prerequisite knowledge in order to be able to do so?

Having said so, I'll show my workout:
k=1:
sum =1

k=2:
sum = 1+2(1-a)=-2a+3

k=3:
$sum = 1+2(1-a)+3(1-a)(1-2a)$
$\;\;\;\;\;\;\;\;=-2a+3+3(1-3a+2a^2)$
$\;\;\;\;\;\;\;\;=6a^2-11a+6$
k=4:
$sum =1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)$
$\;\;\;\;\;\;\;\;=6a^2-11a+6+4(1-6a+11a^2-6a^3)$
$\;\;\;\;\;\;\;\;=-24a^3+50a^2-35a+10$

k=5:
$sum =1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)+5(1-a)(1-2a)(1-3a)(1-4a)$
$\;\;\;\;\;\;\;\;=-24a^3+50a^2-35a+10+5(1-10a+35a^2-50a^3+24a^4)$
$\;\;\;\;\;\;\;\;=120a^4-274a^3+225a^2-85a+15$

I noticed that I don't really have to expand the expression for 3(1-a)(1-2a) as in k=3, sum = 1+2(1-a)+3(1-a)(1-2a)
as I can deduce it from the previous result.Take for example, if I've sum = 1+2(1-a)=-2a+3, then to deduce the value for 3(1-a)(1-2a), I just take 1+ (the terms written in the reverse order of the previous sum but also I add a factor of a each time I go through all the terms and not to forget to change their signs), i.e. $\displaystyle1-3a+2a^2)$
Now, if given $\displaystyle 1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)+5(1-a)(1-2a)(1-3a)(1-4a)=120a^4-274a^3+225a^2-85a+15$, I can deduce the expression for $\displaystyle 6(1-a)(1-2a)(1-3a)(1-4a)(1-5a)=1-15a+85a^2-225a^3+274a^4-120a^5$, that's it!

To sum up,
Sn=Sn-1+n(1+ (the terms written in the reverse order of the previous sum but also adding another factor of a each time we go through all the terms and not to forget to change their signs)

Does this help in deducing the formula for $\displaystyle p_k(a)$ as you mentioned in your previous post?
 
anemone said:
Hi Opalg, I was wondering if I'm allowed to ask any follow-up question here because obviously I'm not the OP who started it.
Anyway, I will proceed and please forgive and ignore me if, by any chance, I have put my foot into my mouth by asking the following question.(Worried)




I don't quite understand how one should be able to 'guess' or should one need some prerequisite knowledge in order to be able to do so?

Having said so, I'll show my workout:
k=1:
sum =1

k=2:
sum = 1+2(1-a)=-2a+3

k=3:
$sum = 1+2(1-a)+3(1-a)(1-2a)$
$\;\;\;\;\;\;\;\;=-2a+3+3(1-3a+2a^2)$
$\;\;\;\;\;\;\;\;=6a^2-11a+6$
k=4:
$sum =1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)$
$\;\;\;\;\;\;\;\;=6a^2-11a+6+4(1-6a+11a^2-6a^3)$
$\;\;\;\;\;\;\;\;=-24a^3+50a^2-35a+10$

k=5:
$sum =1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)+5(1-a)(1-2a)(1-3a)(1-4a)$
$\;\;\;\;\;\;\;\;=-24a^3+50a^2-35a+10+5(1-10a+35a^2-50a^3+24a^4)$
$\;\;\;\;\;\;\;\;=120a^4-274a^3+225a^2-85a+15$

I noticed that I don't really have to expand the expression for 3(1-a)(1-2a) as in k=3, sum = 1+2(1-a)+3(1-a)(1-2a)
as I can deduce it from the previous result.Take for example, if I've sum = 1+2(1-a)=-2a+3, then to deduce the value for 3(1-a)(1-2a), I just take 1+ (the terms written in the reverse order of the previous sum but also I add a factor of a each time I go through all the terms and not to forget to change their signs), i.e. $\displaystyle1-3a+2a^2)$
Now, if given $\displaystyle 1+2(1-a)+3(1-a)(1-2a)+4(1-a)(1-2a)(1-3a)+5(1-a)(1-2a)(1-3a)(1-4a)=120a^4-274a^3+225a^2-85a+15$, I can deduce the expression for $\displaystyle 6(1-a)(1-2a)(1-3a)(1-4a)(1-5a)=1-15a+85a^2-225a^3+274a^4-120a^5$, that's it!

To sum up,
Sn=Sn-1+n(1+ (the terms written in the reverse order of the previous sum but also adding another factor of a each time we go through all the terms and not to forget to change their signs)

Does this help in deducing the formula for $\displaystyle p_k(a)$ as you mentioned in your previous post?
That is not exactly how I came across the formula, but it is as good a way as any. In particular, you started by looking at $p_k(a)$ for small values of $k$ in order to try to find a pattern for it. That is always the best way to approach a problem like this.

After staring at $p_2(a)$, $p_3(a)$ and $p_4(a)$ for a while, and not finding any obvious pattern, I happened to notice that (for those small values of $k$) $p_k(1) = 1$, $p_k(1/2) = 2$, $p_k(1/3)=3$ and so on up to $p_k(1/k)=k.$ In other words, $p_k(a) - \frac1a=0$ when $a = 1,\;1/2,\ldots,1/k$. Therefore, by the factor theorem, $p_k(a) - \frac1a$ is a multiple of $(a-1)\bigl(a-\frac12\bigr)\cdots(a-\frac1k\bigr)$. From there, it was quite easy to arrive at the formula for $p_k(a).$
 
Opalg said:
That is not exactly how I came across the formula, but it is as good a way as any. In particular, you started by looking at $p_k(a)$ for small values of $k$ in order to try to find a pattern for it. That is always the best way to approach a problem like this.

After staring at $p_2(a)$, $p_3(a)$ and $p_4(a)$ for a while, and not finding any obvious pattern, I happened to notice that (for those small values of $k$) $p_k(1) = 1$, $p_k(1/2) = 2$, $p_k(1/3)=3$ and so on up to $p_k(1/k)=k.$ In other words, $p_k(a) - \frac1a=0$ when $a = 1,\;1/2,\ldots,1/k$. Therefore, by the factor theorem, $p_k(a) - \frac1a$ is a multiple of $(a-1)\bigl(a-\frac12\bigr)\cdots(a-\frac1k\bigr)$. From there, it was quite easy to arrive at the formula for $p_k(a).$

Awesome! Awesome!
Opalg, I'm not sure if words could accurately describe how grateful I am to you.

I must also admit that I'm tired and worn out for always trying to look for a pattern for questions like this. Hence, what you told me was like an awakening...(Smile)

THANKS, Opalg!(h)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top