MHB How do I calculate the side of a rhombus using the bisector of an angle theorem?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Angle Theorem
Click For Summary
To determine the side of a rhombus using the bisector of an angle theorem, it is established that if AB/BC = AD/DC, then the parallelogram is a rhombus. The first part of the problem is confirmed correct. For the second part, with given values AB=9, AC=10, and BC=AD=x, the equation 9/x = x/(10-x) leads to a quadratic equation with a unique positive solution. By applying properties of similar triangles, it is derived that ED equals 3.6. The calculations confirm the side length of the rhombus.
Yankel
Messages
390
Reaction score
0
Hello all,

I have this question I struggle with...

View attachment 7836

EDFB is a parallelogram. It is known that AB/BC = AD/DC.

1) Prove that the parallelogram is a rhombus.

2) It is given that: AB=9, AC=10, BC=AD. Calculate the side of the rhombus.

I think I solved the first part. There is a theorem called the "bisector of an angle theorem" according to which if AB/BC = AD/DC then the line BD is a bisector of an angle of the angle B and then a parallelogram in which the diagonal is a bisector of an angle is a rhombus. Am I correct ?

I have a problem with the second part. I can't figure out how to solve it. The answer should be 3.6. I have tried the intercept theorem (or Thales' theorem), but couldn't figure it out.

Can you kindly assist to in the second part of the question ?

Thank you in advance !
 

Attachments

  • aaaa.PNG
    aaaa.PNG
    1.9 KB · Views: 110
Mathematics news on Phys.org
Yankel said:
Hello all,

I have this question I struggle with...
EDFB is a parallelogram. It is known that AB/BC = AD/DC.

1) Prove that the parallelogram is a rhombus.

2) It is given that: AB=9, AC=10, BC=AD. Calculate the side of the rhombus.

I think I solved the first part. There is a theorem called the "bisector of an angle theorem" according to which if AB/BC = AD/DC then the line BD is a bisector of an angle of the angle B and then a parallelogram in which the diagonal is a bisector of an angle is a rhombus. Am I correct ?
Yes.
Yankel said:
I have a problem with the second part. I can't figure out how to solve it. The answer should be 3.6. I have tried the intercept theorem (or Thales' theorem), but couldn't figure it out.

Can you kindly assist to in the second part of the question ?

If BC = AD = x, then the equation AB/BC = AD/DC becomes 9/x = x/(10-x), a quadratic for x with a unique positive solution.

From the similar triangles AED and ABC you can then calculate that ED/x = x/10, which gives ED = 3.6.
 
Thread 'erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
4K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
5
Views
2K