How Do I Create a Transition Matrix for This Markov Chain Scenario?

Click For Summary
SUMMARY

This discussion focuses on creating a transition matrix for a Markov Chain involving three states: Chinese (state 1), Greek (state 2), and Italian (state 3). The student learns that the transition probabilities must sum to 1 and that certain probabilities are defined by the likelihood of choosing one type of food over another. Specifically, if the student eats at a Greek restaurant, the probability of choosing Chinese next is four times that of Italian, and if at an Italian restaurant, the probability of choosing Chinese is twice that of Greek. The transition matrix is established as a 3x3 matrix where the probabilities are calculated based on these conditions.

PREREQUISITES
  • Understanding of Markov Chains and transition matrices
  • Basic probability concepts and notation
  • Matrix representation of probabilities
  • Notation for states and transitions in mathematical modeling
NEXT STEPS
  • Learn how to construct transition matrices for different Markov Chain scenarios
  • Study the properties of Markov Chains, including stationary distributions
  • Explore applications of Markov Chains in real-world scenarios, such as recommendation systems
  • Investigate the use of Python libraries like NumPy for matrix operations and simulations
USEFUL FOR

Students in mathematics or statistics, data scientists working with probabilistic models, and anyone interested in understanding Markov Chains and their applications in decision-making processes.

spence1
Messages
1
Reaction score
0
I just discovered this website and want to thank everyone who is willing to contribute some of their time to help me. I appreciate it more than you know

First off, assume that state 1 is Chinese and that state 2 is Greek, and state 3 is Italian.

A student never eats the same kind of food for 2 consecutive weeks. If she eats a Chinese restaurant one week, then she is equally likely to have Greek as Italian food the next week. If she eats a Greek restaurant one week, then she is four times as likely to have Chinese as Italian food the next week. If she eats a Italian restaurant one week, then she is twice as likely to have Chinese as Greek food the next week.

I feel like I am on the right track, but I'm having trouble translating the words to notation (the most important part).
Chinese could be represented by x, Greek by y, and Italian by z, correct? And that has to add up to 1?

"If she eats a Greek restaurant one week, then she is four times as likely to have Chinese as Italian food the next week."
(I'm using ... to mean I think that there is something more in the equation)

y=4x...

"If she eats an Italian restaurant one week, then she is twice as likely to have Chinese as Greek food the next week."

z=2x...
So yeah. I kinda get the idea, I kinda don't. I think
 
Last edited:
Physics news on Phys.org
spence said:
"If she eats a Greek restaurant one week, then she is four times as likely to have Chinese as Italian food the next week."
(I'm using ... to mean I think that there is something more in the equation)

y=4x...

"If she eats an Italian restaurant one week, then she is twice as likely to have Chinese as Greek food the next week."

z=2x...

She eats restaurants?
 
spence said:
I just discovered this website and want to thank everyone who is willing to contribute some of their time to help me. I appreciate it more than you know

First off, assume that state 1 is Chinese and that state 2 is Greek, and state 3 is Italian.

A student never eats the same kind of food for 2 consecutive weeks. If she eats a Chinese restaurant one week, then she is equally likely to have Greek as Italian food the next week. If she eats a Greek restaurant one week, then she is four times as likely to have Chinese as Italian food the next week. If she eats a Italian restaurant one week, then she is twice as likely to have Chinese as Greek food the next week.

I feel like I am on the right track, but I'm having trouble translating the words to notation (the most important part).
Chinese could be represented by x, Greek by y, and Italian by z, correct? And that has to add up to 1?

"If she eats a Greek restaurant one week, then she is four times as likely to have Chinese as Italian food the next week."
(I'm using ... to mean I think that there is something more in the equation)

y=4x...

"If she eats an Italian restaurant one week, then she is twice as likely to have Chinese as Greek food the next week."

z=2x...
So yeah. I kinda get the idea, I kinda don't. I think
In this problem there are three states: Chinese, Greek and Italian. The transition matrix tells you the probability of changing from one state to another. So it will be a $3\times3$ matrix. The rows and columns of the matrix will correspond to the states. So row 1 corresponds to Chinese, row 2 to Greek, and row 3 to Italian, and similarly for the columns. The $(i,j)$-element of the matrix give the probability of changing from state $j$ to state $i$. So for example the $(1,1)$-element of the matrix is the probability of changing from Chinese to Chinese. But the student never eats the same kind of food for 2 consecutive weeks. That tells you that the $(1,1)$-element of the matrix is $0$.

The $(2,1)$-element is the probability of changing from Chinese to Greek, and the $(3,1)$-element is the probability of changing from Chinese to Italian. Those probabilities must add up to $1$, and you are told that they are both equally llikely. So they must both be $\frac12$. The first column of the matrix is therefore $\begin{bmatrix}0 \\ \frac12 \\ \frac12 \end{bmatrix}$.

Now you have to do the same thing for the other two columns.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
5K
Replies
24
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K