How do I find the tangent to this parametric curve?

Click For Summary
To find the tangent line to the parametric curve defined by x = (t^3) - 3t and y = (t^2) - 5t at t = 4, first calculate dy/dx using the derivatives dy/dt and dx/dt. The slope of the tangent line at this point can be determined by substituting t = 4 into the slope formula m = (dy/dt) / (dx/dt). For horizontal tangents, set dy/dt = 0, and for vertical tangents, set dx/dt = 0 to find the corresponding values of t. This exercise emphasizes the application of parametric equations in calculating tangent lines.
Randall
Messages
22
Reaction score
0

Homework Statement


Let C be the curve given parametrically by x = (t^3) - 3t; y = (t^2) - 5t
a) Find an equation for the line tangent to C at the point corresponding to t = 4
b) Determine the values of t where the tangent line is horizontal or vertical.

Homework Equations


dy/dx = (dy/dt)/(dx/dt)
slope = d/dx of f(x,y)
parametric.JPG

equation of a line: y-y1 = m (x-x1)

The Attempt at a Solution


see attached - I know I need to solve for t, but I don't know how with these seemingly unsolvable equations because there is a t^3 and a t = 52 in the first equation and a t^2and a t = -4 in the second equation. Please help thanks!
 
Physics news on Phys.org
Randall said:

Homework Statement


Let C be the curve given parametrically by x = (t^3) - 3t; y = (t^2) - 5t
a) Find an equation for the line tangent to C at the point corresponding to t = 4
b) Determine the values of t where the tangent line is horizontal or vertical.

Homework Equations


dy/dx = (dy/dt)/(dx/dt)
slope = d/dx of f(x,y) View attachment 76854
equation of a line: y-y1 = m (x-x1)

The Attempt at a Solution


see attached - I know I need to solve for t, but I don't know how with these seemingly unsolvable equations because there is a t^3 and a t = 52 in the first equation and a t^2and a t = -4 in the second equation. Please help thanks!

It's not clear what your confusion is here. No, you don't need to solve for t; you are given the value of t for the point C on the curve. (Hint: t = 4)

For a) You have calculated an expression for dy/dx in terms of t. Use the given value of t to find the equation of the tangent line at C.

For b) For what value of m is the tangent line at C horizontal? For what value of m is the tangent line at C vertical? What are the values of t which give these two values of m?
 
I guess I'm not clear how to go about solving this problem then. Can you help me choose the correct procedure for finding the equation of the line tangent to the curve? Don't I have to take the derivative or something somehow? I'm not clear on what to do...
 
You've already determined dy/dt and dx/dt using the parametric equations of the curve. The slope of the tangent line is

m = dy/dx = (dy/dt) / (dx/dt) = (2t - 5) / (3t2 - 3)

You are given that t = 4 at point C. What is the slope of the tangent line at point C? [Hint: Plug and chug.]

As to the rest of the equation for the tangent line, once you have calculated m, you need one point (x,y) on the line to complete it. You can obtain the (x,y) of point C by using the parametric equations for x and y, knowing that t = 4 at point C.

This is not a difficult problem. It's intended to show you how to work with parametric expressions instead of directly with x and y.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
919
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K