How do I sketch the reflection of line segment AB about the line y = x?

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Reflection
Click For Summary

Discussion Overview

The discussion revolves around how to sketch the reflection of a line segment AB about the line y = x. Participants explore the mathematical principles behind reflections, the necessary transformations of coordinates, and the geometric implications of the line y = x as a perpendicular bisector.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant states that to reflect the line segment AB, the line y = x must be shown as the perpendicular bisector of AB, indicating a misunderstanding of the reflection process.
  • Another participant explains that reflecting a point about the line y = x involves swapping the x and y coordinates, providing a mathematical justification for this transformation.
  • A similar explanation is reiterated by another participant, emphasizing the distance from a point to the line y = x and how to derive the reflected coordinates.
  • One participant questions whether to switch the original coordinates of the given points and plot them, seeking clarification on the reflection process.
  • A later reply challenges the initial understanding, asserting that the reflection requires finding new points A' and B' such that y = x is the perpendicular bisector of both segments from A to A' and from B to B'.

Areas of Agreement / Disagreement

Participants express differing views on the correct approach to reflecting the line segment, with some emphasizing the need for a geometric understanding of the perpendicular bisector, while others focus on the coordinate transformation method. The discussion remains unresolved regarding the correct interpretation of the reflection process.

Contextual Notes

There are limitations in the understanding of the reflection process, particularly regarding the role of the line y = x as a perpendicular bisector and the necessary transformations of the coordinates. Some assumptions about the geometric properties of the reflection may not be fully articulated.

mathdad
Messages
1,280
Reaction score
0
The endpoints of line AB are given to be (-1, -2) and
(-5, -2). Sketch the reflection of line segment AB about the line y = x.

As I understand this concept, I must show that the line y = x is the perpendicular bisector of the line segment AB.

Two points are given. This tells me to find the slope m.

m = (-2 - (-2))/(-5 - (-1))

m = (-2 + 2)/(-5 + 1)

m = 0/-4

m = 0

When m = 0, we are talking about a horizontal line.

Where do I go from here?
 
Mathematics news on Phys.org
A reflection about the line $y=x$ simply requires swapping the $x$ and $y$ coordinates.

To see why this is true, consider a point in the plane $\left(x_1,y_1\right)$. Its distance $d$ to the line $y=x$ is given by:

$$d=\frac{\left|x_1-y_1\right|}{\sqrt{2}}$$

So, we want to find the other point $\left(x_1,y_1\right)$ with the same distance, only on the other side of $y=x$, that lies along the line:

$$y=-(x-x_1)+y_1$$

Hence:

$$y_2-y_1=x_1-x_2\tag{1}$$

$$d=\frac{\left|x_2-y_2\right|}{\sqrt{2}}$$

This gives us two cases:

i) $$x_2-y_2=x_1-y_1\implies y_2-y_1=x_2-x_1$$

Adding this to (1), we find:

$$y_1=y_2$$

This means we have the original point, so we discard this.

ii) $$x_2-y_2=y_1-x_1\implies y_2+y_1=x_2+x_1$$

Adding this to (1), we find:

$$y_2=x_1\implies x_2=y_1$$

Thus, we find the reflection of $\left(x_1,y_1\right)$ about the line $y=x$ is the point $\left(y_1,x_1\right)$.
 
MarkFL said:
A reflection about the line $y=x$ simply requires swapping the $x$ and $y$ coordinates.

To see why this is true, consider a point in the plane $\left(x_1,y_1\right)$. Its distance $d$ to the line $y=x$ is given by:

$$d=\frac{\left|x_1-y_1\right|}{\sqrt{2}}$$

So, we want to find the other point $\left(x_1,y_1\right)$ with the same distance, only on the other side of $y=x$, that lies along the line:

$$y=-(x-x_1)+y_1$$

Hence:

$$y_2-y_1=x_1-x_2\tag{1}$$

$$d=\frac{\left|x_2-y_2\right|}{\sqrt{2}}$$

This gives us two cases:

i) $$x_2-y_2=x_1-y_1\implies y_2-y_1=x_2-x_1$$

Adding this to (1), we find:

$$y_1=y_2$$

This means we have the original point, so we discard this.

ii) $$x_2-y_2=y_1-x_1\implies y_2+y_1=x_2+x_1$$

Adding this to (1), we find:

$$y_2=x_1\implies x_2=y_1$$

Thus, we find the reflection of $\left(x_1,y_1\right)$ about the line $y=x$ is the point $\left(y_1,x_1\right)$.
Do I switch the original coodinates of the given points, plot the points on the xy-plane and then connect them with a straight line?
 
RTCNTC said:
Do I switch the original coodinates of the given points, plot the points on the xy-plane and then connect them with a straight line?

Yes. (Yes)
 
RTCNTC said:
The endpoints of line AB are given to be (-1, -2) and
(-5, -2). Sketch the reflection of line segment AB about the line y = x.

As I understand this concept, I must show that the line y = x is the perpendicular bisector of the line segment AB.
Well, there's your problem- you understand wrong. You need to find two new points, A' and B', such y= x is the perpendicular bisector of both the line segment from A to A' and the line segment from B to B'.

If A were (x, y) and B were (y, x), that is, if A were something like (2, 3) and B were (3, 2), then y= x would be the perpendicular bisector of AB.

Two points are given. This tells me to find the slope m.

m = (-2 - (-2))/(-5 - (-1))

m = (-2 + 2)/(-5 + 1)

m = 0/-4

m = 0

When m = 0, we are talking about a horizontal line.

Where do I go from here?
 
Last edited by a moderator:
HallsofIvy said:
Well, there's your problem- you understand wrong. You need to find two new points, A' and B', such y= x is the perpendicular bisector of both the line segment from A to A' and the line segment from B to B'.

I know what to do thanks to Mark.
 

Similar threads

Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
1
Views
3K