MHB How Do I Solve a Logarithmic Equation with Different Bases and Variables?

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Logarithmic
Click For Summary
To solve the logarithmic equation log_2(x+2) + log_(x-2)4 = 3, the user attempts to manipulate the equation using properties of logarithms. They express the equation in terms of common logarithms and simplify it, leading to a complex expression involving log(x+2) and log(x-2). The user questions whether any value of x satisfies the equation, suggesting that their analysis indicates no solutions exist. Graphical analysis supports this conclusion, confirming that there are no valid x values that fulfill the equation. The discussion emphasizes the challenges of solving logarithmic equations with different bases and variables.
Monoxdifly
MHB
Messages
288
Reaction score
0
A friend asked me how to solve this question:
$$log_2(x+2)+log_{(x-2)}4=3$$
I said I had no idea because one is x + 2 and the other one is x - 2. If both are x + 2 or x - 2, I can do it. He said that if that's the case, even at his level he could solve it. This is what I've done so far regarding the question.
$$log_2(x+2)+log_{(x-2)}4=3$$
$$\frac{log(x+2)}{log2}+\frac{log4}{log(x-2)}=3$$
$$\frac{log(x+2)log(x-2)+log4log2}{log2log(x-2)}=3$$
$$log(x+2)log(x-2)+2log^22=3log2log(x-2)$$
$$log(x+2)log(x-2)-3log2log(x-2)=-2log^22$$
$$log(x-2)(log(x+2)-3log2)=-2log^22$$
What should I do from here? Or did I make some mistakes?
 
Mathematics news on Phys.org
Beer hangover induced idea follows.
20200915_141613.jpg
 
So, no x fulfills the equation, right?
 
Monoxdifly said:
So, no x fulfills the equation, right?

That's what the graph says ...
 
Okay, thanks guys.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K