How Do Radial Oscillations Affect Star Stability?

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
The spherically symmetric oscillations of a star satisfy the Sturm-Liouville equation\begin{align*}
\frac{d}{dr} \left[ \frac{\gamma p}{r^2} \frac{d}{dr}(r^2 \xi_r) \right] - \frac{4}{r} \frac{dp}{dr} \xi_r + \rho \omega^2 \xi_r = 0
\end{align*}
Relevant Equations
N/A
So far I have not made much meaningful progress beyond two equations; \begin{align*}
\rho \frac{D\mathbf{u}}{Dt} = - \nabla p \implies \rho \left( \frac{\partial}{\partial t} + u \frac{\partial}{\partial r} \right)u = - \frac{\partial p}{\partial r}
\end{align*}and thermal energy:\begin{align*}
\frac{Dp}{Dt} = -\gamma p \nabla \cdot \mathbf{u} \implies \left( \frac{\partial}{\partial t} + u \frac{\partial}{\partial r} \right)p = -\gamma p \frac{\partial}{\partial r}(r^2 u)
\end{align*}I'm somewhat confused why there's no time dependence in the form given. What exactly is ##\xi_r##?
 
Physics news on Phys.org
You are dealing with oscillations, and there is an \omega^2 in the ODE. That suggests variables are assumed to be functions of r alone times e^{i\omega t}. I suspect \xi_r denotes (small) radial displacement from an equilibrium position, in which case <br /> u_r = \frac{\partial}{\partial t}(\xi_r(r)e^{i\omega t}) = i\omega \xi_r(r) e^{i\omega t}. The ODE you are trying to derive is linear and the governing PDEs are not, which suggests that the system has been linearised about the static equiblibrium state.
 
  • Like
Likes ergospherical
Thank you. I applied ##\partial/\partial t## to my first equation and ##\partial/\partial r## to my second equation, and subsequently eliminated ##\partial^2 p / \partial r \partial t##. Then I substituted for ##u = i\omega \xi_r e^{i \omega t}## and kept only terms to linear order in ##\xi_r##. After some manipulation,
\begin{align*}
(\xi_r p')' + (\gamma p(r^2 \xi_r)')' + \rho \omega^2 \xi_r = 0
\end{align*}Seems likely that I made at least one slip. I will check again tomorrow with fresher eyes!
 
ergospherical said:
I will check again tomorrow with fresher eyes!
Have you cleared that with the fresher? :eek:
 
pbuk said:
Have you cleared that with the fresher? :eek:
That would imply that they have a choice!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top