How Do Radial Oscillations Affect Star Stability?

Click For Summary

Homework Help Overview

The discussion revolves around the effects of radial oscillations on star stability, focusing on the governing equations of motion and thermodynamics in a stellar context. Participants are examining the implications of these equations and the assumptions involved in their derivation.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are analyzing equations related to radial oscillations and questioning the absence of time dependence in certain forms. There is discussion about the meaning of variables such as ##\xi_r## and the implications of linearization in the context of oscillatory motion.

Discussion Status

Some participants have provided insights into the nature of the equations and the assumptions made, while others are still working through their manipulations and expressing uncertainty about potential errors in their calculations. The discussion is ongoing, with no explicit consensus reached yet.

Contextual Notes

There is mention of linearization around a static equilibrium state and the complexity of the governing partial differential equations, which may impact the interpretations and approaches being discussed.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Homework Statement
The spherically symmetric oscillations of a star satisfy the Sturm-Liouville equation\begin{align*}
\frac{d}{dr} \left[ \frac{\gamma p}{r^2} \frac{d}{dr}(r^2 \xi_r) \right] - \frac{4}{r} \frac{dp}{dr} \xi_r + \rho \omega^2 \xi_r = 0
\end{align*}
Relevant Equations
N/A
So far I have not made much meaningful progress beyond two equations; \begin{align*}
\rho \frac{D\mathbf{u}}{Dt} = - \nabla p \implies \rho \left( \frac{\partial}{\partial t} + u \frac{\partial}{\partial r} \right)u = - \frac{\partial p}{\partial r}
\end{align*}and thermal energy:\begin{align*}
\frac{Dp}{Dt} = -\gamma p \nabla \cdot \mathbf{u} \implies \left( \frac{\partial}{\partial t} + u \frac{\partial}{\partial r} \right)p = -\gamma p \frac{\partial}{\partial r}(r^2 u)
\end{align*}I'm somewhat confused why there's no time dependence in the form given. What exactly is ##\xi_r##?
 
Physics news on Phys.org
You are dealing with oscillations, and there is an \omega^2 in the ODE. That suggests variables are assumed to be functions of r alone times e^{i\omega t}. I suspect \xi_r denotes (small) radial displacement from an equilibrium position, in which case <br /> u_r = \frac{\partial}{\partial t}(\xi_r(r)e^{i\omega t}) = i\omega \xi_r(r) e^{i\omega t}. The ODE you are trying to derive is linear and the governing PDEs are not, which suggests that the system has been linearised about the static equiblibrium state.
 
  • Like
Likes   Reactions: ergospherical
Thank you. I applied ##\partial/\partial t## to my first equation and ##\partial/\partial r## to my second equation, and subsequently eliminated ##\partial^2 p / \partial r \partial t##. Then I substituted for ##u = i\omega \xi_r e^{i \omega t}## and kept only terms to linear order in ##\xi_r##. After some manipulation,
\begin{align*}
(\xi_r p')' + (\gamma p(r^2 \xi_r)')' + \rho \omega^2 \xi_r = 0
\end{align*}Seems likely that I made at least one slip. I will check again tomorrow with fresher eyes!
 
ergospherical said:
I will check again tomorrow with fresher eyes!
Have you cleared that with the fresher? :eek:
 
pbuk said:
Have you cleared that with the fresher? :eek:
That would imply that they have a choice!
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K