How Do Splitting Fields Relate to Each Other?

Click For Summary
The discussion centers on the relationship between two theorems regarding splitting fields: the first states that if a polynomial p(x) splits in a field K, then its splitting field E is generated by the roots of p(x), while the second asserts that the splitting field is unique up to isomorphism. Participants express confusion about how these theorems relate, particularly whether the first theorem implies the second. An example involving the fields Q[√3,√5] and Q[√3+√5] illustrates that while these fields are isomorphic, they are not identical, highlighting the complexity of splitting fields in different extension fields. Ultimately, the discussion reveals a deeper understanding of the nature of splitting fields and their isomorphic properties, emphasizing that while they may not be equal, they retain a unique structure within their respective fields.
Euclid
Messages
213
Reaction score
0
In my class notes, I have two theorems which don't quite seem to fit together. Maybe you can help me out.
Thm 1 If p(x) in F[x] splits in K, then E=F(a1,...,an) is the splitting field of p(x) in K (the a_i's are the roots of p(x)).
Thm 2 If p(x) in F[x], then the splitting field of p(x) is unique up to isomorphism.
I'm clearly missing something big here. Doesn't (1) imply (2)? Isn't (1) even stronger than (2)?
What's an example of a polynomial with two distinct but isomorphic splitting fields?
 
Physics news on Phys.org
Strictly speaking Thm 1 should state that E is *a* splitting field for p.

Thm 2 then states that this is essentially unique.

For instance, it is not obvious, but it is true, that

\mathbb{Q}[\sqrt{3},\sqrt{5}] \cong \mathbb{Q}[\sqrt{3}+\sqrt{5}]

So that \mathbb{Q}[\sqrt{3}+\sqrt{5}] is the splitting field of

(x^2-3)(x^2-5) and isn't of the form you wrote.
 
Matt's point is that although you are right, the definition of the splitting field in K, makes it opbvious that there is only one such field IN K, there may be other splitting fields that are not in K.

Matt's example is a little misleading to me since it is the same field but just written with a different generator. It would persuade me more if he were to give an isomorphic splitting field not lying in the same ambient field, such as Q[X] modded out by the minimal polynomial of sqrt(3)+sqrt(5).
 
mathwonk said:
Matt's example is a little misleading to me since it is the same field but just written with a different generator. It would persuade me more if he were to give an isomorphic splitting field not lying in the same ambient field, such as Q[X] modded out by the minimal polynomial of sqrt(3)+sqrt(5).


Feel free to post a better example.
 
Ok... This is helping. I guess the problem is this:
Suppose we have a field F and two extension fields K and K' in which a polynomial p(x) splits. We have the splitting field E for p(x) in K and the splitting field E' for p(x) in K'.
The problem in my mind is that I'm tempted to say E=E'. I mean, when we mod out by a certain irreducible, we always view F as contained in the resulting field. But if K and K' both are extension fields, and we view them as containing F, then E and E' both contain F. E and E' are both supposedly the smallest subfields of K and K' containing the roots of p(x). But their intersection is a field contained in K and K', and containing the roots of p(x). So the intersection is in fact equal to E and E' and so E=E'.
This is why I'm troubled. I guess it's just a silly point. I know there are instances when splitting fields aren't actually equal, but it certainly seems obvious to me that they should be isomorphic (in your example above, it wasn't as obvious, but I think that's partly because it wasn't even obvious that that polynomial even splits in Q[root3+root5]). But the proof given in class was much more complex, and seemingly unnecessarily so.
 
Last edited:
The proof I know for the isomorphism of splitting fields is trivial, and roughly says what you just said, but in fewer words. Although that is probably a function of the order and style in which I learned the results. However, there is also the stronger result that splitting fields behave well with respect to field isomorphisms.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K