How Do We Determine the Convergence of These Complex Integrals?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Convergence Integrals
Click For Summary
SUMMARY

This discussion focuses on determining the convergence of various complex integrals, specifically $\displaystyle{\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx}$, $\displaystyle{\int_0^{\infty}e^{sx}\cos (tx)dx}$, and $\displaystyle{\int_0^1\left (\log (x)\right )^2dx}$. The first integral converges to $\frac{1}{\log(2)}$ using substitution and limits. The second integral converges for $s < 0$ and $t \in \mathbb{R}$, yielding a result of $-\frac{1}{s}$. The discussion also explores convergence without direct calculation, utilizing comparison tests for integrals involving logarithmic functions.

PREREQUISITES
  • Understanding of improper integrals and limits
  • Familiarity with substitution methods in integration
  • Knowledge of logarithmic functions and their properties
  • Experience with comparison tests for integral convergence
NEXT STEPS
  • Study the properties of improper integrals in calculus
  • Learn about the comparison test for convergence of integrals
  • Explore advanced techniques in integration, such as integration by parts
  • Investigate the behavior of logarithmic functions in integrals
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and the convergence of complex integrals.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to check the convergence of the following integrals:

  1. $\displaystyle{\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx}$

    We have that: \begin{equation*}\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx=\lim_{b\rightarrow \infty}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx\end{equation*}

    To calculate the integral $\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx$ we use the substitution $u=\log (x)$.

    We have the following: \begin{align*}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx & =\int_{\log(2)}^{\log(b)}\frac{1}{e^u\left (\log (e^u)\right )^2}\cdot e^udu \\ & =\int_{\log(2)}^{\log(b)}u^{-2}du \\ & =-\left [u^{-1}\right ]_{\log (2)}^{\log (b)} \\ & =-\left (\frac{1}{\log (b)}-\frac{1}{\log (2)}\right ) \\ & =-\frac{1}{\log (b)}+\frac{1}{\log (2)}\end{align*}

    So, the integral is \begin{equation*}\lim_{b\rightarrow \infty}\int_2^b\frac{1}{x\left (\log (x)\right )^2}dx=\lim_{b\rightarrow \infty}\left (-\frac{1}{\log (b)}+\frac{1}{\log (2)}\right )=-0+\frac{1}{\log (2)}=\frac{1}{\log (2)}\in \mathbb{R}\end{equation*}

    Therefore, the integral $\displaystyle{\int_2^{\infty}\frac{1}{x\left (\log (x)\right )^2}dx}$ converges. Could we show the convergence also without calculating the integral? (Wondering)

    $$$$
  2. $\displaystyle{\int_0^{\infty}e^{sx}\cos (tx)dx}$, wobei $s<0$ und $t\in \mathbb{R}$

    We have that \begin{equation*}\left |e^{sx}\cos (tx)\right |=\left |e^{sx}\right |\cdot \left |\cos (tx)\right |\leq \left |e^{sx}\right |=e^{sx}\end{equation*}

    We have that: \begin{equation*}\int_0^{\infty}e^{sx}=\lim_{b\rightarrow \infty}\int_0^b e^{sx}dx\end{equation*}

    Therfore we get \begin{equation*}\lim_{b\rightarrow \infty}\int_0^b e^{sx}dx=\lim_{b\rightarrow \infty}\left [\frac{1}{s}e^{sx}\right ]_0^b=\frac{1}{s}\lim_{b\rightarrow \infty}\left [e^{sx}\right ]_0^b=\frac{1}{s}\lim_{b\rightarrow \infty}\left (e^{sb}-1\right )=\frac{1}{s}\left (0-1\right )=-\frac{1}{s}\end{equation*}

    So, we have that \begin{equation*}\int_0^{\infty}e^{sx}=-\frac{1}{s}\in \mathbb{R}\end{equation*}

    That means that the integral $\displaystyle{\int_0^{\infty}e^{sx}dx}$ coverges and so the integral $\displaystyle{\int_0^{\infty}e^{sx}\cos (tx)dx}$ also converges.

    Is this correct? (Wondering)

    $$$$
  3. $\displaystyle{\int_0^1\left (\log (x)\right )^2dx}$

    Calculating that integral we get $0$. So, the integral converges.

    Is there also an other way without calculating it? (Wondering)

    $$$$
  4. $\displaystyle{\int_1^{\infty}\frac{x\sqrt{x}}{(2x+1)^2}dx}$

    Could you give a hint for that one? (Wondering)
 
Physics news on Phys.org
[*] $\displaystyle{\int_1^{\infty}\frac{x\sqrt{x}}{(2x+1)^2}dx}$

I think it's divergent, since $x>\sqrt{x}$the integral by comparison is greater than

$\frac{1}{2}\int_{1}^{\infty} \,\frac{1}{2x+1}dx-\frac{1}{2}\int_{1}^{\infty} \,\frac{1}{{(2x+1)}^{2}}dx$

the first diverges
 
sarrah said:
[*] $\displaystyle{\int_1^{\infty}\frac{x\sqrt{x}}{(2x+1)^2}dx}$

I think it's divergent, since $x>\sqrt{x}$the integral by comparison is greater than

$\frac{1}{2}\int_{1}^{\infty} \,\frac{1}{2x+1}dx-\frac{1}{2}\int_{1}^{\infty} \,\frac{1}{{(2x+1)}^{2}}dx$

the first diverges

I see! (Nerd)
mathmari said:
3. $\displaystyle{\int_0^1\left (\log (x)\right )^2dx}$

Calculating that integral we get $0$. So, the integral converges.

Is there also an other way without calculating it? (Wondering)

For that one, could we do the following:

We have that $\log (x)\leq x-1$ then $\log^2(x)\leq (x-1)^2$.

We have that $\int_0^1(x-1)^2dx=\ldots =\frac{1}{3}\in \mathbb{R}$. So, the integral of $(x-1)^2$ converges, and from the direct comparison we get that the integral of $\log^2(x)$ converges.

Is this correct? (Wondering)
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K