Gregg
- 452
- 0
The discrete random variable X has probability density P(X=x) =kp^x for x=0,1,... where p \in (0,1). Find normalizing constant k and E(X) as functions of p. For each integer x>0 find P(X>=x) and hence find P(X=y|X>=x) for each integer y>0.
found k=1-p
E(X)=\sum kxp^x =p/(1-p)
P(X>=x) = 1-\sum_{x'=0}^{x} kp^x' = p^{x+1}
P(X=y|X>=x) =?
found k=1-p
E(X)=\sum kxp^x =p/(1-p)
P(X>=x) = 1-\sum_{x'=0}^{x} kp^x' = p^{x+1}
P(X=y|X>=x) =?