MHB How Do You Calculate the Arc Length of a Baseball's Trajectory?

Click For Summary
To calculate the arc length of a baseball's trajectory, parametric equations are established based on the initial conditions, with x = 146.7cos(theta)t and y = 3 + 146.7sin(theta)t - 16t^2. When graphed at an angle of 15 degrees, the ball only travels 349 ft, falling short of the 400 ft centerfield fence, indicating it is not a home run. To find the arc length, the formula involves integrating the square root of the sum of the squares of the derivatives of the parametric equations. The limits of integration are determined by the time T when the ball lands, which can be calculated using the angle theta, with 15 degrees suggested as a reference. The discussion emphasizes the need for clarity on the angle to accurately compute the landing time and arc length.
calcboi
Messages
16
Reaction score
0
The centerfield fence at a ballpark is 10 ft high and 400 ft from home plate. The ball is 3 ft above the ground when hit, and leaves with an angle theta degrees with the horizontal. The bat speed is 100 mph. Use the parametric equations x = (v0cos(theta))t y = h + (v0sin(theta))t - 16t^2
a. Write parametric equations for the path of the ball.
I got this as x = 146.7cos(theta)t and y = 3 + 146.7sin(theta)t - 16t^2
b. Graph the path of the ball if theta = 15 degrees. Is it a home run?
I got no because the ball only reached 349 ft, not 400 ft.
c. Find the arc length of the path of the ball until it lands.
This is the part I need help on. I don't know how to get the arc length.
 
Physics news on Phys.org
calcboi said:
The centerfield fence at a ballpark is 10 ft high and 400 ft from home plate. The ball is 3 ft above the ground when hit, and leaves with an angle theta degrees with the horizontal. The bat speed is 100 mph. Use the parametric equations x = (v0cos(theta))t y = h + (v0sin(theta))t - 16t^2
a. Write parametric equations for the path of the ball.
I got this as x = 146.7cos(theta)t and y = 3 + 146.7sin(theta)t - 16t^2
b. Graph the path of the ball if theta = 15 degrees. Is it a home run?
I got no because the ball only reached 349 ft, not 400 ft.
c. Find the arc length of the path of the ball until it lands.
This is the part I need help on. I don't know how to get the arc length.

Hi calcboi!

You can find the formula for arc length here on wiki.

In short the arclength L is:
$$L=\int ds = \int \sqrt{dx^2 + dy^2} = \int \sqrt{(x'(t)dt)^2 + (y'(t)dt)^2} = \int \sqrt{x'(t)^2 + y'(t)^2}dt$$
 
Thanks, but I am unsure what to use for the limits of integration.
 
calcboi said:
Thanks, but I am unsure what to use for the limits of integration.

Did you find the time at which the ball lands?
Let's call that T.
Then the integral limits are t=0 and t=T.
 
I like Serena said:
Did you find the time at which the ball lands?
Let's call that T.
Then the integral limits are t=0 and t=T.

I can't find T unless I have an angle for theta, and I don't know what to put for the angle. I am guessing I should use 15 degrees from the earlier portion but I'm not sure.
 
calcboi said:
I can't find T unless I have an angle for theta, and I don't know what to put for the angle. I am guessing I should use 15 degrees from the earlier portion but I'm not sure.

I'm also guessing you should probably use 15 degrees from the earlier question.
But you can also leave it as just theta and treat it as an arbitrary constant which just happens to have an unknown value.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
10
Views
3K
Replies
7
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
3
Views
2K