How Do You Calculate the Stopping Distance of a Car?

Click For Summary
SUMMARY

The stopping distance of an 1800 kg car traveling at 29.0 m/s can be calculated using the coefficient of kinetic friction of 0.600 between rubber and dry concrete. The initial kinetic energy (KE_initial) is determined to be 756900 J. The frictional force, calculated as 10584 N, is derived from the normal force (17640 N) multiplied by the coefficient of friction. The stopping distance is then found by dividing the initial kinetic energy by the frictional force, resulting in a stopping distance of 42.9 meters.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with kinetic energy calculations
  • Knowledge of friction and its coefficients
  • Ability to apply the work-energy principle
NEXT STEPS
  • Study the relationship between force, mass, and acceleration using Newton's second law
  • Learn about the work-energy theorem and its applications in physics
  • Explore different coefficients of friction for various materials
  • Investigate the effects of varying speeds and weights on stopping distances
USEFUL FOR

Students in physics, automotive engineers, and anyone interested in understanding vehicle dynamics and stopping distances.

bigtymer8700
Messages
40
Reaction score
0
The driver of an 1800kg car traveling at 29.0m/s slams on the brakes, locking the wheels on the dry pavement. The coefficient of kinetic friction between rubber and dry concrete is typically 0.600. Find the stopping distance

ive been trying to this problem forever and i know that Its just I am missing something small but i can't figure out what.

Ive solved for the KE_initial= 756900J and i know K_final= 0 I know i have to use the constant accel. equation
vf^2=vi^2 + 2as. I just don't know how to go about starting the problem all the unknowns have got me confused.

My attempt went like this. I got the F_normal by 1800kg(9.8) to get 17640N.
17640(.600) gave me 10584N which i used as the frictional force.
a=F/m so then 17640N-10584N/1800 =3.92 i used that for acceleration but i got the wrong answer i don't know where I am messing up
 
Last edited:
Physics news on Phys.org
Energy isn't important in this case. Only speed, mass, force, distance and acceleration. You should have a formula relating them.

You have initial and final speed and mass already. You can find the frictional force. It's the coefficient of friction times the normal force. You know what the normal force is, right? It's the weight of the car.

Now, the frictional force is what's stopping the car, right? So if you know it and know the mass of the car, you can find the deceleration, and you should have a formula to get distance from all of that.
 
dont you need the acceleration to get the normal Force?
 
Last edited:
Nope. The mass of the car is 1800kg. To find the force you have to multiply by acceleration. Think of which way the normal force is pointing.
 
Normal force is pointing up i got that from my free-body diagram so i did 1800kg(9.8) to get 17640N
 
You're off by a zero, but yeah, that's it.

So you have the normal force. So F = u*m*a. That's your stopping force.
 
yea I got that far 17640(.600)= 10584N for the stopping force. but how do i go about solving for the acceleration to get the stopping distance?
 
Last edited:
Ok I got some insight on the problem and hopefully this is the way. but i know that W= K_f - K_i. I already know the car is stopping so K_final is 0.
K_i is (.5)1800kg(29m/s)^2 which gives you 756900J. Since you know Work is also W=F * s you got the Work from the KE and F=17640N. you divide 756900J/17640N to get 42.9 is that correct?
 
Yes, that works, but I don't understand why you insisted on using energy here. It works here because it's a simple system. If you get something more complicated, energy probably won't be "conserved", so I'd be careful and stick to forces instead.
 
  • #10
Since you know Work is also W=F * s you got the Work from the KE and F=17640N. you divide 756900J/17640N to get 42.9 is that correct?

Shouldn't you be dividing by 10584 N here? That is what the frictional force was found to be. 17640 N is the normal force.
 
  • #11
hage567 said:
Shouldn't you be dividing by 10584 N here? That is what the frictional force was found to be. 17640 N is the normal force.


so to get that distance you have to divide 756900/10584?
 
  • #12
Yes. Do you understand why? The frictional force is what is causing the car to stop, not the normal force.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K
Replies
31
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 41 ·
2
Replies
41
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K