How Do You Calculate the Wavelength of an Electron with 1keV Kinetic Energy?

  • Context: Archived 
  • Thread starter Thread starter ZedCar
  • Start date Start date
  • Tags Tags
    Electron Wavelength
Click For Summary

Homework Help Overview

The discussion revolves around calculating the wavelength of an electron with a kinetic energy of 1 keV, utilizing concepts from quantum mechanics and relativistic physics, specifically the de Broglie wavelength and relativistic mass-energy relationships.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the use of the de Broglie wavelength formula and the relativistic mass-energy equation to derive the wavelength. Questions arise regarding the need to convert energy units and how to handle multiple unknowns in the equations.

Discussion Status

Several participants have provided calculations and comparisons between non-relativistic and relativistic approaches to determine the wavelength. There is an ongoing examination of the differences in results from these methods, with some emphasis on the precision of calculations. No explicit consensus has been reached on a single method as the best approach.

Contextual Notes

Participants note the significance of the electron's rest mass energy in relation to its kinetic energy, questioning the appropriateness of non-relativistic approximations given the energy levels involved.

ZedCar
Messages
353
Reaction score
1

Homework Statement





Homework Equations



de Broglie wavelength λ = h/p
E^2 = p^2 c^2 + (m0)^2 c^4
L-compton = (h-bar) / mc


The Attempt at a Solution



I'm trying to work out the wavelength of an electron with a kinetic energy of 1keV

So I intend on using
de Broglie wavelength λ = h/p

and

Relativistic mass equation
E^2 = p^2 c^2 + (m0)^2 c^4

then inputting the rest mass energy of an electron (511 keV) into the formula above. Though do I need to convert this first to kg?

Also, I'd still be left with two unknowns in mass eqn i.e. E and p, so how do I obtain the value for E?

Or should I instead be using the Compton wavelength formula i.e.

L-compton = (h-bar) / mc

The question just asks for the wavelength.
 
Physics news on Phys.org
ZedCar said:
I'm trying to work out the wavelength of an electron with a kinetic energy of 1keV

The relationship between kinetic energy - momentum for a free electron is ##T = \frac{p^{2}}{2m}##. So, from this, we can find the momentum ##p##:

##p = \sqrt{2mT} = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 10^{3}\frac{kg^{2} m^{2}}{s^{2}}} \approx 17.064 \times 10^{-24} \frac{kg m}{s} ##

Now, we can find the De Broglie wavelength: ##\lambda = \frac{h}{p} = \frac{6.625 \times 10^{-34}}{17.064 \times 10^{-24}} m\approx 0.039 nm##
 
Last edited:
QuantumQuest said:
The relationship between kinetic energy - momentum for a free electron is ##T = \frac{p^{2}}{2m}##. So, from this, we can find the momentum ##p##:

##p = \sqrt{2mT} = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 10^{3}\frac{kg^{2} m^{2}}{s^{2}}} \approx 17.064 \times 10^{-24} \frac{kg m}{s} ##

Now, we can find the De Broglie wavelength: ##\lambda = \frac{h}{p} = \frac{6.625 \times 10^{-34}}{17.064 \times 10^{-24}} m\approx 0.039 nm##

This result is correct, because 1keV is non-relativistic for electrons, since electron rest mass is around 500keV.

On the other hand one can solve this exercise using the equation OP wanted to use: E² = m²c⁴ + p²c²

He said the energy (meaning the kinetic energy) of the electron is one keV. Thus 1keV = E - mc² = ##\sqrt{m²c⁴ + p²c²} -mc²##. If OP solves this equation, then OP can insert it in the De Broglie wavelength formula:

$$p² = \frac{1}{c²}(1keV + mc²)² - m²c² => p = \sqrt{ \frac{1}{c²}(1keV + mc²)² - m²c² } \approx 1.70933440*10^{-23}kg \frac{m}{s}$$

And so ##\lambda = h/p \approx 0.038764033nm##

Both results, of course, agree

EDIT: Not trying to be pedant, but because I want to emphasize the minute differences between both methods I will recalculate what QuantumQuest already did, but with higher precision:

non-relativistic:

##p \approx 1.70849875*10^{-23}kg \frac{m}{s} \approx 31.9687keV/c##
##\lambda = h/p \approx 0.038782993nm##

relativistic:

##p \approx 1.70933440*10^{-23}kg \frac{m}{s} \approx 31.98434keV/c##
##\lambda = h/p \approx 0.038764033nm##
 
Last edited:
Making my point about the minuteness of the corrections more thorough:

##p_{rel} = \sqrt{ \frac{1}{c²}(T + mc²)² - m²c² } = \sqrt{T²/c²+2Tm+m²c²-m²c²} = \sqrt{T²/c²+2Tm} = \sqrt{T}\sqrt{T/c²+2m}##
##p_{non-rel} = \sqrt{2Tm} = \sqrt{T}\sqrt{2m}##

Thus ##\frac{p_{rel}}{p_{non-rel}} = \sqrt{ frac{T/c² + 2m}{2m}} = \sqrt{\frac{T}{2mc²} + 1}##
And so ##\frac{p_{relativistic}}{p_{non-relativistic}}(x) = \sqrt{\frac{x}{2}+1}## where ##x = \frac{T}{mc²}##

This formula holds true for any massive particle.

In our case ##x \approx 1/500## and so the above formula is essentially one.
This is a good way to see when you can use non-relativistic approximations. Basically as long as your kinetic energies are much smaller than your rest mass energies, you are safe:

$$ T << mc² $$
 

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
941
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K