I How Do You Compute the Density Matrix of a Bipartite State?

Rayan
Messages
17
Reaction score
1
TL;DR Summary
What is the easiest way to compute a density matrix of bipartite states?
If we for example have such a bipartite state:

$$ | \phi > = \frac{1}{2} [ |0>|0> + |1>|0> + |0>|1> + |1>|1> ] $$

What is the easiest way to compute a density matrix of bipartite states? Should I just compute it as it is? i.e:

$$ \rho = | \phi > < \phi | $$

Or should I convert to matrix form first? Any advice appreciated!

I tried to convert it to matrix form and got the following:

$$ | \phi > = \frac{1}{2}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} $$

and

$$ < \phi | = \frac{1}{2}
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$

But then I don't think it is possible to compute the following outer product?

$$ \rho = \frac{1}{4}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \cdot
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$
 
Last edited:
Physics news on Phys.org
Things went wonky when you calculated the dual vector (bra) of the state. How did the complex conjugate transpose turn a column vector into a matrix?
 
Rayan said:
Should I just compute it as it is? i.e:
$$ \rho = | \phi > < \phi | $$
Yes.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top