Undergrad How Do You Compute the Density Matrix of a Bipartite State?

Click For Summary
To compute the density matrix of a bipartite state, the simplest method is to use the outer product of the state vector with itself, expressed as ρ = |φ><φ|. Converting the state to matrix form can complicate the calculation, particularly when determining the dual vector (bra) of the state. The confusion arises from how the complex conjugate transpose transforms a column vector into a matrix. The consensus is that directly computing the density matrix from the state vector is the most straightforward approach. Thus, ρ = |φ><φ| is the recommended method.
Rayan
Messages
17
Reaction score
1
TL;DR
What is the easiest way to compute a density matrix of bipartite states?
If we for example have such a bipartite state:

$$ | \phi > = \frac{1}{2} [ |0>|0> + |1>|0> + |0>|1> + |1>|1> ] $$

What is the easiest way to compute a density matrix of bipartite states? Should I just compute it as it is? i.e:

$$ \rho = | \phi > < \phi | $$

Or should I convert to matrix form first? Any advice appreciated!

I tried to convert it to matrix form and got the following:

$$ | \phi > = \frac{1}{2}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} $$

and

$$ < \phi | = \frac{1}{2}
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$

But then I don't think it is possible to compute the following outer product?

$$ \rho = \frac{1}{4}
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} \cdot
\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}
$$
 
Last edited:
Physics news on Phys.org
Things went wonky when you calculated the dual vector (bra) of the state. How did the complex conjugate transpose turn a column vector into a matrix?
 
Rayan said:
Should I just compute it as it is? i.e:
$$ \rho = | \phi > < \phi | $$
Yes.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K