How Do You Convert Linear Operators to Dirac Notation?

AI Thread Summary
The discussion focuses on converting linear operators into Dirac notation, highlighting the differences between the left-hand side (LHS) and right-hand side (RHS) expressions. The LHS is straightforward, represented as <ψ,aφ>=<ψIaIφ>, while the RHS poses challenges, particularly in interpreting <a†ψ,φ> and its conjugate. Participants clarify that both expressions ultimately map to the same Dirac notation, emphasizing the relationship between kets and bras. Additionally, issues with LaTeX previewing during initial posts are noted, suggesting a workaround of refreshing the page. The conversation aims to clarify the conversion process rather than serve as a homework query.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
Convert general notation of linear operators in vector space to dirac notation
Relevant Equations
Dirac Notation
Screen Shot 2022-09-01 at 11.07.52 PM.png


I am trying to convert the attached picture into dirac notation.
I find the LHS simple, as it is just <ψ,aφ>=<ψIaIφ>
The RHS gives me trouble as I am interpreting it as <a†ψ,φ>=<ψIa†Iφ> but if I conjugate that I get <φIaIψ>* which is not equiv to the LHS.

*Was going to type in LaTex but I can't preview my code during my intial post? is that normal?*
 
Physics news on Phys.org
quittingthecult said:
Homework Statement:: Convert general notation of linear operators in vector space to dirac notation
Relevant Equations:: Dirac Notation

View attachment 313611

I am trying to convert the attached picture into dirac notation.
I find the LHS simple, as it is just <ψ,aφ>=<ψIaIφ>
The RHS gives me trouble as I am interpreting it as <a†ψ,φ>=<ψIa†Iφ> but if I conjugate that I get <φIaIψ>* which is not equiv to the LHS.

*Was going to type in LaTex but I can't preview my code during my intial post? is that normal?*
Note that ##< \alpha , \beta > = \alpha ^{ \dagger } \beta##.

Hint: ##< \psi , a \phi > = \psi ^{ \dagger } (a \phi) = ( \psi ^{ \dagger } a ) \phi##

The system, for some reason, occasionally flubs the LaTeX if you are writing the first LaTeX in the thread. Copy your text to the clipboard (for safety) and refresh the page. It should work after that.

-Dan
 
  • Like
Likes guyvsdcsniper
quittingthecult said:
Homework Statement:: Convert general notation of linear operators in vector space to dirac notation
Relevant Equations:: Dirac Notation

View attachment 313611

I am trying to convert the attached picture into dirac notation.
I find the LHS simple, as it is just <ψ,aφ>=<ψIaIφ>
The RHS gives me trouble as I am interpreting it as <a†ψ,φ>=<ψIa†Iφ> but if I conjugate that I get <φIaIψ>* which is not equiv to the LHS.

*Was going to type in LaTex but I can't preview my code during my intial post? is that normal?*
First, ##\psi## and ##\varphi## are vectors, which map to kets. And ##a## is an operator, with ##a^{\dagger}## its Hermitian conjugate. So, we have:
$$a\varphi \leftrightarrow a\ket{\varphi}$$$$a^{\dagger}\psi \leftrightarrow a^{\dagger}\ket{\psi}$$Now, to form the inner product in Dirac notation, we need to map the first ket to its correspondng bra:
$$a^{\dagger} \ket \psi \to \bra{\psi} a$$So, we can see that both the RHS and the LHS of the original linear algebra map to the same thing in Dirac notation:
$$\langle \psi, a\varphi \rangle \to \bra \psi a \ket \varphi$$$$\langle a^{\dagger}\psi, \varphi \rangle \to \bra \psi a \ket \varphi$$PS this is not really homework as it's just an explanation of the Dirac notation itself.
 
  • Like
Likes guyvsdcsniper and topsquark
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top