MHB How Do You Correctly Format Limits and Derivatives in LaTeX?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Functions Limits
AI Thread Summary
The discussion centers on a user's difficulty with formatting a LaTeX expression related to limits and derivatives in a mathematics forum. The user seeks assistance in correcting the expression: lim_{x → c} f^*(x) = lim_{x → c} (f(x) - f(c))/(x - c) = f'(c). A fellow forum member provides guidance, noting that using f^{'} or f^\prime resolves the error encountered with f^'. The importance of using backslashes for pre-defined functions like lim to ensure proper formatting is also highlighted. The user expresses gratitude for the clarification and successfully updates their post with the corrected LaTeX code.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I have just posted an edit to my (very) recent post:

[h=1]http://mathhelpboards.com/analysis-50/apostol-continuity-amp-differentiabilty-14190.html[/h]in the Analysis Forum.

I am having trouble with the following Latex expression:\text{lim}_{x \rightarrow c} f^* (x) = \text{lim}_{x \rightarrow c} frac{f(x) - f(c)}{x-c} = f^'(c) = f^*(c) = f^*(c)
Can someone help me to get it right?

(I am assuming that experienced Latex users can see what I am trying to achieve ... )

Peter
 
Physics news on Phys.org
Peter said:
I have just posted an edit to my (very) recent post:

[h=1]http://mathhelpboards.com/analysis-50/apostol-continuity-amp-differentiabilty-14190.html[/h]in the Analysis Forum.

I am having trouble with the following Latex expression:\text{lim}_{x \rightarrow c} f^* (x) = \text{lim}_{x \rightarrow c} frac{f(x) - f(c)}{x-c} = f^'(c) = f^*(c) = f^*(c)
Can someone help me to get it right?

(I am assuming that experienced Latex users can see what I am trying to achieve ... )

Peter

\lim_{x \to c} f^*(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)

inside the LaTeX environment this gives

$\displaystyle \lim_{x \to c} f^*(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) $
 
Prove It said:
\lim_{x \to c} f^*(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)

inside the LaTeX environment this gives

$\displaystyle \lim_{x \to c} f^*(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c) $
Thanks for the help, Prove It ... have now corrected my post in the Analysis Forum

By the way, i found that the Latex editor was still objecting to

f^' and seems to insist on f'

Not sure why f^' is an error?

Peter
 
Hello Peter,

While I cannot explain why, it does seem that f^' throws an error while f^{'} does not. You could also use f^\prime as well. :D

I assume you noticed by reading Prove It's post that for pre-defined functions (such as lim) all you need is to precede it with a backslash in order for it to render non-italicized.
 
MarkFL said:
Hello Peter,

While I cannot explain why, it does seem that f^' throws an error while f^{'} does not. You could also use f^\prime as well. :D

I assume you noticed by reading Prove It's post that for pre-defined functions (such as lim) all you need is to precede it with a backslash in order for it to render non-italicized.
Thanks Mark ... thanks for clarifying that ...

Yes, noted that lim was a pre-defined function ...

Thanks again,

Peter
 

Similar threads

Back
Top