Huski
Hi, everyone. I had an example from my book, but I wasn't sure how they got \dfrac{1}{2}cos\theta on step 7? It seems like once they combined the constants, they ended up with just cos2\theta. Although, they have a \dfrac{1}{2} in front. Can someone help me understand where that constant came from? Thank you.
1. Homework Statement
Find the area of the region enclosed by the polar curve r=3-3cos\theta
Area in Polar Coordinates
dA=\dfrac{1}{2}r^2d\theta
Double Angle Identity:
cos2\theta=2cos^2\theta-1
1. dA=\dfrac{1}{2}(3-3cos\theta)^2d\theta
factor
2. dA=\dfrac{1}{2}(9-18cos\theta+9cos^2\theta)d\theta
write the integral and factor \dfrac{1}{2} through
3. \displaystyle A=\dfrac{1}{2}\int_{0}^{2\pi}(9-18cos^2\theta+9cos^2\theta)d\theta
factor out 9
4. \displaystyle A=9\cdot\dfrac{1}{2}\int_{0}^{2\pi}(1-2cos\theta+cos^2\theta)d\theta
rewrite double-angle identity
5. cos^2\theta=\dfrac{cos^2\theta+1}{2}
replace cos^2\theta with the double-angle identity
6. \displaystyle A=\dfrac{9}{2}\int_{0}^{2\pi}\left(1-2cos\theta+\dfrac{cos^2\theta+1}{2} \right)d\theta
combine the constants to get \dfrac{3}{2}
7. \displaystyle A=\dfrac{9}{2}\int_{0}^{2\pi}\left(\dfrac{3}{2}-2cos\theta+\dfrac{1}{2}cos2\theta \right)d\theta
integrate
8. \dfrac{9}{2}\left[\dfrac{3}{2}\theta-2sin\theta+\dfrac{1}{4}sin\theta \right]_{0}^{2\pi}
answer
9. \dfrac{27\pi}{2}
1. Homework Statement
Find the area of the region enclosed by the polar curve r=3-3cos\theta
Homework Equations
Area in Polar Coordinates
dA=\dfrac{1}{2}r^2d\theta
Double Angle Identity:
cos2\theta=2cos^2\theta-1
The Attempt at a Solution
1. dA=\dfrac{1}{2}(3-3cos\theta)^2d\theta
factor
2. dA=\dfrac{1}{2}(9-18cos\theta+9cos^2\theta)d\theta
write the integral and factor \dfrac{1}{2} through
3. \displaystyle A=\dfrac{1}{2}\int_{0}^{2\pi}(9-18cos^2\theta+9cos^2\theta)d\theta
factor out 9
4. \displaystyle A=9\cdot\dfrac{1}{2}\int_{0}^{2\pi}(1-2cos\theta+cos^2\theta)d\theta
rewrite double-angle identity
5. cos^2\theta=\dfrac{cos^2\theta+1}{2}
replace cos^2\theta with the double-angle identity
6. \displaystyle A=\dfrac{9}{2}\int_{0}^{2\pi}\left(1-2cos\theta+\dfrac{cos^2\theta+1}{2} \right)d\theta
combine the constants to get \dfrac{3}{2}
7. \displaystyle A=\dfrac{9}{2}\int_{0}^{2\pi}\left(\dfrac{3}{2}-2cos\theta+\dfrac{1}{2}cos2\theta \right)d\theta
integrate
8. \dfrac{9}{2}\left[\dfrac{3}{2}\theta-2sin\theta+\dfrac{1}{4}sin\theta \right]_{0}^{2\pi}
answer
9. \dfrac{27\pi}{2}