MHB How Do You Differentiate a Natural Logarithm Function Like This?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Derivative Ln
Click For Summary
To differentiate the function f(x) = ln[(2x+3)(x+6)^5/(1-2x)^3], the first step involves expanding it into separate logarithmic terms: f(x) = ln(2x+3) + 5ln(x+6) - 3ln(1-2x). The derivative is calculated using the formula d(ln(f(x)))/dx = f'(x)/f(x), leading to f'(x) = 3(4x^2 - 16x - 45)/[(x+6)(2x-1)(2x+3)]. The discussion also raises a question about the title "Ln integral," as the problem specifically requests a derivative. The differentiation process is clarified by examining each logarithmic term individually.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\large{242.7.3.83}$

Differentiate
$$\displaystyle
f(x)=\ln\left[{\frac{(2x+3)(x+6)^5}{(1-2x)^3}}\right]$$
Assume first step is expansion..
$$f(x)=\ln\left({2x+3}\right)
+5\ln\left({x+6}\right)
-3\ln\left({1-2x}\right)$$
 
Last edited:
Physics news on Phys.org
Re: Ln integral. 242.7.3.83

Yes. Now use

$$\dfrac{d\ln(f(x))}{dx}=\dfrac{f'(x)}{f(x)}$$
 
Re: Ln integral. 242.7.3.83

Why was this titled "Ln integral" when the problem asks for a derivative?
 
$\large{242.7.3.83}$

Differentiate
$$\displaystyle
f(x)=\ln\left[{\frac{(2x+3)(x+6)^5}{(1-2x)^3}}\right] \ \ \ \ \
f'(x)=\frac{3\left(4{x}^{2}-16x-45 \right)}{(x+6)(2x-1)(2x+3)}$$
expansion..
$$f(x)=\ln\left({2x+3}\right)
+5\ln\left({x+6}\right)
-3\ln\left({1-2x}\right) $$
then
$$\dfrac{f'(x)}{f(x)}
= \frac{2}{2x+3}+\frac{5}{x+6}-\frac{6}{2x-1}$$$$$$
 
Last edited:
karush said:
$\large{242.7.3.83}$

Differentiate
$$\displaystyle
f(x)=\ln\left[{\frac{(2x+3)(x+6)^5}{(1-2x)^3}}\right] \ \ \ \ \
f'(x)=\frac{3\left(4{x}^{2}-16x-45 \right)}{(x+6)(2x-1)(2x+3)}$$
expansion..
$$f(x)=\ln\left({2x+3}\right)
+5\ln\left({x+6}\right)
-3\ln\left({1-2x}\right) $$
then
$$\dfrac{d\ln(2x+3)}{dx}=\dfrac{f'(x)}{f(x)}$$
In this case, since you are doing this one term at a time, f(x) = 2x + 3. Then for the second term f(x) = x + 6 and for the third f(x) = 1 - 2x

-Dan
 

Similar threads

Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K