How Do You Evaluate the Integral of a Rational Function?

Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral of a rational function, specifically the integral of the form $\int \frac{x+2}{x^2+1} \, dx$. Participants explore various methods of integration, including substitution techniques and the use of trigonometric identities.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant proposes breaking the integral into two parts: $\int \frac{x}{x^2+1} \, dx$ and $2\int \frac{1}{x^2+1} \, dx$.
  • Another participant suggests using the substitution $u = x^2 + 1$, leading to $\frac{1}{2} \int \frac{1}{u} \, du$ for the first part.
  • A different approach involves a tangent substitution for the second integral, $\int \frac{1}{x^2 + 1} \, dx$, leading to $2\arctan(x)$.
  • Some participants express uncertainty about the direction of their solutions, questioning if they are on the right track.
  • One participant summarizes the solution as $\frac{1}{2}\ln(x^2+1) + 2\arctan(x) + C$, indicating a potential final form of the integral.

Areas of Agreement / Disagreement

There is no consensus on a single method or solution, as participants present various approaches and express uncertainty about the correctness of their methods. Multiple competing views remain regarding the evaluation of the integral.

Contextual Notes

Some participants' methods rely on specific substitutions that may not be universally applicable without additional context. The discussion includes various steps that may depend on the participants' interpretations of the integral's structure.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{evaluate}$
\begin{align}
\displaystyle
{I}&={\int{\frac{x+2}{x^2+1}dx}}\\
&=\int{\frac{x}{x^{2}{+1}}dx{\ +\ 2}\int{\frac{1}{x^{2}{+1}}}}{\ }dx\\
u&=x^{2}+1 \therefore \frac{1}{2x}du=dx\\
x&=\sqrt{u-1}\\
\end{align}
...?

$\textit{calculator answer.?}$

$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
 
Last edited:
Physics news on Phys.org
Re: int ratioanal function

Since $du = 2x\, dx$, then $(1/2)du = dx$. So $x\, dx/(x^2 + 1) = (1/2)du$. Take it from there.

As for the other integral, use a tangent substitution.
 
Re: int ratioanal function

$\textsf{substitute $x=\tan(u)
\therefore dx=\sec^2(u)$ }$
\begin{align}
\displaystyle
&=2\int\frac{\tan\left({u}\right)}
{\tan^2(u)+1}
\cdot \sec^2(u )\, du
=2\int \tan\left({u}\right) \, du
=-2\ln\left({\cos\left({u}\right)}\right)+C
\end{align}
$\textsf{substitute u=arctan{x}}$

$\textit{this doesn't seem to be headed towards the answer}$

$\textit{calculator answer}$

$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
 
Re: int ratioanal function

The tangent substitution was meant for the second integral

$$2\int \frac{1}{x^2 + 1}\, dx$$

and not the integral $\int x\, dx/(x^2 + 1)$. I already explained how to evaluate that integral with the $u$ you had already chose, namely, $u = x^2 + 1$.
 
Re: int ratioanal function

so...
$\textsf{solving}\\$
\begin{align}
\displaystyle
I_a&=\int \frac{x}{x^{2}+1} \, dx \\
u&=x^{2}+1 \therefore \frac{1}{2x}du=dx\\
\textit{u substitution}\\
&=\frac{1}{2} \int \frac{1}{u}du =\frac{\ln\left({u}\right)}{2}\\
\textit{backsubstition }\\
I_a&=\dfrac{\ln\left(x^2+1\right)}{2}
\end{align}
$\textsf{solving}\\$
\begin{align}
\displaystyle
I_b &= 2 \int \frac{1}{x^{2}+1} \, dx\\
x&=\tan(u) \therefore dx=\sec^2(u) du \\
u&=\arctan(x) \\
\textit{u substitution }\\
I_b &= 2 \int \frac{1}{\tan^{2}u+1} \, \sec^2(u) du \\
&=2 \int 1 du= 2u\\
\textit{backsubstition}\\
I_b&=2\arctan{(x)}
\end{align}$\textit{$I_a + I_b +C = $}$$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
 
Last edited:
I would simply write:

$$I=\int\frac{x+2}{x^2+1}\,dx=\frac{1}{2}\int \frac{2x}{x^2+1}\,dx+2\int \frac{1}{x^2+1}\,dx=\frac{1}{2}\ln(x^2+1)+2\arctan(x)+C$$
 
Re: int ratioanal function

karush said:
so...
$\textsf{solving}\\$
\begin{align}
\displaystyle
I_a&=\int \frac{x}{x^{2}+1} \, dx \\
u&=x^{2}+1 \therefore \frac{1}{2x}du=dx\\
\textit{u substitution}\\
&=\frac{1}{2} \int \frac{1}{u}du =\frac{\ln\left({u}\right)}{2}\\
\textit{backsubstition }\\
I_a&=\dfrac{\ln\left(x^2+1\right)}{2}
\end{align}
$\textsf{solving}\\$
\begin{align}
\displaystyle
I_b &= 2 \int \frac{1}{x^{2}+1} \, dx\\
x&=\tan(u) \therefore dx=\sec^2(u) du \\
u&=\arctan(x) \\
\textit{u substitution }\\
I_b &= 2 \int \frac{1}{\tan^{2}u+1} \, \sec^2(u) du \\
&=2 \int 1 du= 2u\\
\textit{backsubstition}\\
I_b&=2\arctan{(x)}
\end{align}$\textit{$I_a + I_b +C = $}$$\dfrac{\ln\left(x^2+1\right)}{2}
+2\arctan\left(x\right)+C$
Your work here is correct.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K