MHB How Do You Evaluate the Integral of Sin^4(x) from 0 to Pi?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Pi
Click For Summary
The integral of sin^4(x) from 0 to π evaluates to 3π/8. The calculation involves rewriting sin^4(θ) as (1 - cos(2θ))^2/4 and expanding it. The integral is then computed by breaking it down into simpler parts, including integrating constants and trigonometric functions. Some participants noted alternative methods, such as power reduction, which they found confusing. The discussed approach is confirmed to be correct and straightforward.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
:cool::cool:206.8.3.9
$\displaystyle
I_9=\int_{0}^{\pi} \sin^4\left({\theta}\right) \,d\theta
=\frac{3\pi}{8}$
$$I_9
=\int_{0}^{\pi} \frac{(1-\cos\left({2\theta}\right))^2}{4}\,d\theta $$
Expand
$$\displaystyle
I_9
=\frac{1}{4}\left[
\int 1 \,d\theta
-2\int \cos\left({2\theta}\right) \,d\theta
+\int \cos^2\left({2\theta}\right) \,d\theta
\right]_0^\pi$$
integrat
$$\displaystyle
I_9
=\frac{1}{4}\left[
\theta
-\frac{\sin\left({2\theta}\right)}{2}
+\frac{\sin\left({4\theta}\right)}{8}
+\frac{\theta}{2}
\right]_0^\pi=\frac{3\pi}{8}$$
 
Last edited:
Physics news on Phys.org
karush said:
:cool::cool:206.8.3.9
$\displaystyle
I_9=\int_{0}^{\pi} \sin^4\left({\theta}\right) \,d\theta
=\frac{3\pi}{8}$
$$I_9
=\int_{0}^{\pi} \frac{(1-\cos\left({2\theta}\right))^2}{4}\,d\theta $$
Expand
$$\displaystyle
I_9
=\frac{1}{4}\left[
\int 1 \,d\theta
-2\int \cos\left({2\theta}\right) \,d\theta
+\int \cos^2\left({2\theta}\right) \,d\theta
\right]_0^\pi$$
integrat
$$\displaystyle
I_9
=\frac{1}{4}\left[
\theta
-\frac{\sin\left({2\theta}\right)}{2}
+\frac{\sin\left({4\theta}\right)}{8}
+\frac{\theta}{2}
\right]_0^\pi=\frac{3\pi}{8}$$

Above approach is right. what do you want to know ?
 
I saw some other solutions to this but they used power reduction it really got confusing. 😎