goohu
- 53
- 3
Hi, I'm trying to solve the sum of following infinite series:
$$ \sum_{k=1}^{\infty} \frac{{k}^{2}+4}{{2}^{k}} = \sum_{k=1}^{\infty} \frac{{k}^{2}}{{2}^{k}}
+ \sum_{k=1}^{\infty} \frac{4}{{2}^{k}}$$
Using partial sum we can rewrite the first series: $$ \sum_{k=1}^{\infty} \frac{{k}^{2}}{{2}^{k}} = \sum_{k=1}^{n} \frac{{k}^{2}}{{2}^{k}} = \frac{n(n+1)(2n+1)}{6} * \left(\frac{1}{2}\right)^{\!{k}} $$ , as n goes to $$\infty$$
The second series is a geometric one and can be rewritten as: $$ \sum_{k=1}^{\infty} \frac{4}{{2}^{k}} = 4* \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{\!{k}} = 1/2 $$
It's unclear how to get the sum from the term $$ \frac{n(n+1)(2n+1)}{6} $$
$$ \sum_{k=1}^{\infty} \frac{{k}^{2}+4}{{2}^{k}} = \sum_{k=1}^{\infty} \frac{{k}^{2}}{{2}^{k}}
+ \sum_{k=1}^{\infty} \frac{4}{{2}^{k}}$$
Using partial sum we can rewrite the first series: $$ \sum_{k=1}^{\infty} \frac{{k}^{2}}{{2}^{k}} = \sum_{k=1}^{n} \frac{{k}^{2}}{{2}^{k}} = \frac{n(n+1)(2n+1)}{6} * \left(\frac{1}{2}\right)^{\!{k}} $$ , as n goes to $$\infty$$
The second series is a geometric one and can be rewritten as: $$ \sum_{k=1}^{\infty} \frac{4}{{2}^{k}} = 4* \sum_{k=1}^{\infty} \left(\frac{1}{2}\right)^{\!{k}} = 1/2 $$
It's unclear how to get the sum from the term $$ \frac{n(n+1)(2n+1)}{6} $$
Last edited: