MHB How Do You Integrate 1/(x^2 * (1 + x^2))?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral of 1/(x^2(1+x^2)) is solved as -arctan(x) - 1/x + C. The solution involves breaking down the integral into two parts: ∫(1/x^2) dx and -∫(1/(x^2+1)) dx. The first integral evaluates to -1/x, while the second uses a substitution involving x = tan(u) to yield -arctan(x). A minor error in the sign was noted, but the overall approach was confirmed as correct. The discussion highlights the use of partial fractions and computational tools like the TI-Nspire for solving integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Whitman 8.3.9
$$\displaystyle
\int\frac{1 }{{x}^{2}\left(1+{x}^{2}\right)} \ dx
=-\arctan\left({x}\right)-\frac{1}{x}+C $$
Expand
$$\displaystyle
\int\frac{1}{{x}^{2}}\ dx
-\int \frac{1}{{x}^{2}+1}dx $$

Solving
$$\displaystyle
\int\frac{1}{{x}^{2}}\ dx =-\frac{1}{x}+C$$
Solving
$$x=\tan\left({u}\right) \ \ \ \ dx=\sec^2 \left({u}\right)\ du $$
$$\displaystyle -\int \frac{1}{{x}^{2}+1}dx
=-\int \frac{1}{\tan^2{u} +1}\sec^2 \left({u}\right)\ du
=\int 1 \ du
=u=-\arctan\left({x}\right)$$
Then...
$$\displaystyle -\arctan\left({x}\right)-\frac{1}{x}+C $$
 
Last edited:
Physics news on Phys.org
You dropped a minus sign. Other than that it looks good.
 
karush said:
Whitman 8.3.9
$$\displaystyle
\int\frac{1 }{{x}^{2}\left(1+{x}^{2}\right)} \ dx
=-\arctan\left({x}\right)-\frac{1}{x}+C $$
Expand
$$\displaystyle
\int\frac{1}{{x}^{2}}\ dx
-\int \frac{1}{{x}^{2}+1}dx $$

I'm assuming you used Partial Fractions to do this...

Solving
$$\displaystyle
\int\frac{1}{{x}^{2}}\ dx =-\frac{1}{x}+C$$
Solving
$$x=\tan\left({u}\right) \ \ \ \ dx=\sec^2 \left({u}\right)\ du $$
$$\displaystyle -\int \frac{1}{{x}^{2}+1}dx
=-\int \frac{1}{\tan^2{u} +1}\sec^2 \left({u}\right)\ du
=\int 1 \ du
=u=-\arctan\left({x}\right)$$
Then...
$$\displaystyle -\arctan\left({x}\right)-\frac{1}{x}+C $$

This is correct, well done :)
 
Actually I used the expand function on the TI-Nspire😎😎
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
3K