MHB How Do You Integrate Using Inverse Trigonometric Functions?

Click For Summary
To integrate the function ∫dx/√(2x - x²), the integrand can be rewritten in the form ∫du/√(a² - u²). The transformation involves completing the square: 2x - x² can be expressed as -(x² - 2x), which simplifies to -[(x - 1)² - 1]. This leads to the integral ∫dx/√(1 - (x - 1)²), allowing the use of the inverse trigonometric function arcsin. The final integration will yield arcsin(x - 1) plus a constant of integration.
paulmdrdo1
Messages
382
Reaction score
0
hey guys can you help solve this problem.

$\displaystyle\int\frac{dx}{\sqrt{2x-x^2}}$

i know that i have to change the integrand into this form $\displaystyle\frac{du}{\sqrt{a^2-u^2}}$ can you please show me how. thanks!
 
Physics news on Phys.org
paulmdrdo said:
hey guys can you help solve this problem.

$\displaystyle\int\frac{dx}{\sqrt{2x-x^2}}$

i know that i have to change the integrand into this form $\displaystyle\frac{du}{\sqrt{a^2-u^2}}$ can you please show me how. thanks!

\displaystyle \begin{align*} \int{\frac{dx}{\sqrt{2x - x^2}}} &= \int{\frac{dx}{\sqrt{-\left( x^2 - 2x \right) } }} \\ &= \int{\frac{dx}{\sqrt{- \left[ x^2 -2x + (-1)^2 - (-1)^2 \right] }}} \\ &= \int{\frac{dx}{\sqrt{ - \left[ \left( x - 1 \right) ^2 - 1 \right] }}} \\ &= \int{ \frac{dx}{\sqrt{ 1 - \left( x - 1 \right) ^2 } }} \end{align*}

Go from here :)
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K