How Do You Integrate (z^5 + 9z^2) * (z^3 + 1)^12?

  • Context: MHB 
  • Thread starter Thread starter shamieh
  • Start date Start date
Click For Summary
SUMMARY

The integral of the expression (z^5 + 9z^2) * (z^3 + 1)^{12} can be solved using the substitution method. By letting u = z^3 + 1, the differential du becomes 3z^2 dz, leading to the transformation of the integral into a more manageable form. The final result is expressed as (1/3) * [(1/14)(z^3 + 1)^{14} + (8/13)(z^3 + 1)^{13}] + C, confirming the necessity of the 1/3 factor throughout the calculation.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of polynomial functions and their properties
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study advanced integration techniques, including integration by parts
  • Learn about polynomial long division for simplifying integrals
  • Explore the application of the Fundamental Theorem of Calculus
  • Investigate numerical integration methods for complex functions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, as well as educators looking for examples of integration techniques.

shamieh
Messages
538
Reaction score
0
$$\int (z^5 + 9z^2) * (z^3 + 1)^{12} \, dz$$

$$u = z^3 + 1$$
$$z^3 = u - 1$$

$$du = 3z^2 $$

$$1/3 = z^2 dz$$

$$\int (z^5 + 9z^2) * (u - 1 + 1)^{12} $$

$$= \int (z^5 + 9z^2) * u^{12}$$

now I'm stuck..
 
Physics news on Phys.org
Re: taking A.D

Once you have $u = z^3 + 1$, and that $du = 3z^2 dz$.
Observe:
\[
(z^5 + 9z^2)dz = z^2(z^3 + 9)dz \Rightarrow \frac 13 (u-1+9) du...
\]
 
Re: taking A.D

magneto said:
Once you have $u = z^3 + 1$, and that $du = 3z^2 dz$.
Observe:
\[
(z^5 + 9z^2)dz = z^2(z^3 + 9)dz \Rightarrow \frac 13 (u-1+9) du...
\]
Yea..Somehow my answer is incorrect?

Here is what I'm getting.

$$\frac{1}{3} \int z^2(z^3 + 9) * (u - 1 + 1)^{12} = \frac{1}{3} \int \frac{1}{3}(u - 1 + 9) * u^{12})$$

$$= \frac{1}{9} \int (u + 8) * u^{12} = \frac{1}{9} \int u^{13} + 8u^{12} = 1/9 ( \frac{u^{14}}{14} + \frac{8}{13} u^{13}) = \frac{(z^3 + 1)^{14}}{126} + \frac{8}{117} (z^3 + 1)^{13} + C$$
 
Re: taking A.D

Is it me or is there an extra $\frac 13$ in the equation?
 
Re: taking A.D

No the 1/3 is definitely needed...

$\displaystyle \begin{align*} \int{ \left( z^5 + 9z^2 \right) \, \left( z^3 + 1 \right) ^{12}\,\mathrm{d}z} &= \int{ z^2\,\left( z^3 + 9 \right) \, \left( z^3 + 1 \right) ^{12}\,\mathrm{d}z} \\ &= \frac{1}{3} \int{ 3z^2 \,\left( z^3 + 1 + 8 \right) \, \left( z^3 + 1 \right) ^{12}\,\mathrm{d}z } \end{align*}$

So now make the substitution $\displaystyle \begin{align*} u = z^3 + 1 \implies \mathrm{d}u = 3z^2\,\mathrm{d}z \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{1}{3} \int{ 3z^2 \, \left( z^3 + 1 + 8 \right) \, \left( z^3 + 1 \right) \, \mathrm{d}z } &= \frac{1}{3} \int{ \left( u + 8 \right) \, u^{12} \, \mathrm{d}u } \\ &= \frac{1}{3} \int{ u^{13} + 8u^{12}\,\mathrm{d}u } \\ &= \frac{1}{3} \left( \frac{1}{14} u^{14} + \frac{8}{13} u^{13} \right) + C \\ &= \frac{1}{3} \left[ \frac{1}{14} \left( z^3 + 1 \right) ^{14} + \frac{8}{13} \left( z^3 + 1 \right) ^{13} \right] + C \end{align*}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K