1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How do you know a function is well defined?

  1. Oct 11, 2014 #1
    1. The problem statement, all variables and given/known data
    I was given the following function

    f(x,y) =
    \begin{cases}
    \frac{x^2y}{x^4+y^2} & (x,y) \neq 0 \\
    0 & (x,y) = 0
    \end{cases}

    Which of the following are true?
    (I) f is not continuous at (0, 0).
    (II) f is differentiable everywhere
    (III) f as a well defined partial derivatives everywhere (i.e. ## \frac{\partial f}{\partial x}##, ## \frac{\partial f}{\partial y}## are both defined)
    (IV) f is continuous at (0, 0) but not differentiable at (0, 0).

    3. The attempt at a solution

    I know 1 is true. Since 1 is true 2 is not true and IV is definitely not true. But the answer states that 3 is also true.

    I don't think I understand what it means to be a well defined partial derivative.
     
  2. jcsd
  3. Oct 12, 2014 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Are you sure (I) is true?
     
  4. Oct 12, 2014 #3

    Mark44

    Staff: Mentor

    Seems like it's true to me (i.e., that f is discontinuous at (0, 0)). Along the path y = x2 ##\lim_{(x, y) \to (0, 0)} f(x, y) \neq f(0, 0)##.
     
  5. Oct 12, 2014 #4
    So 1 is definitely true, but what does it mean to be a well defined partial derivative?
     
  6. Oct 12, 2014 #5

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The problem statement tells you what this means ... namely that both partials are defined everywhere.
     
  7. Oct 12, 2014 #6

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    In polar coordinates, [itex]x= r cos(\theta)[/itex], [itex]y= r sin(\theta)[/itex] so that
    [tex]\frac{x^2y}{x^4+ y^2}= \frac{r^3 cos^2(\theta)sin(\theta)}{r^4 sin^4(\theta)+ r^2 cos^2(\theta)}= r\frac{cos^2(\theta)sin(\theta)}{r^2 sin^2(\theta)+ cos^2(\theta)}[/tex]. As (x, y) goes to (0, 0), along any path, r goes to 0 so that fraction goes to 0. This function is continuous at (0, 0).
     
  8. Oct 12, 2014 #7

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Did you try the path ##\theta(r) = r##? (Also, your denominator mixes up sin and cos for x and y.) Mark44 already showed that this path leads to a non-zero limit in #3.
     
  9. Oct 12, 2014 #8

    pasmith

    User Avatar
    Homework Helper

    Let [itex]0 < |C| \leq \frac12[/itex] and [itex]\alpha = \frac{1}{2C}(1 + \sqrt{1 - 4C^2}) \neq 0[/itex] so that [itex]C\alpha^2 - \alpha + C = 0[/itex]. Then on the continuous path [itex](x(t),y(t)) = (t, \alpha t^2)[/itex] we have [tex]
    C(x^4 + y^2) - x^2 y = (C\alpha^2 - \alpha + C)t^4 = 0
    [/tex] so that [tex]
    \lim_{t \to 0} f(x(t),y(t)) = C \neq 0
    [/tex] and [itex]f[/itex] is not continuous at the origin.
     
    Last edited: Oct 12, 2014
  10. Oct 12, 2014 #9
    I realize that my question probably sounds pretty idiotic with or without the problem statement. But what I'm confused about is if it's not continuous at the origin, then it can't be differentiable at the origin. So then how is it defined everywhere? Does the second part of the piecewise take care of that?
     
  11. Oct 12, 2014 #10
    I think the gist of the "well-defined" part of (II) is that you can use easy derivative rules and formulas to find the partials away from the origin, but you need to appeal to the definition of the partial derivative to determine whether ##\frac{\partial f}{\partial x}## and ##\frac{\partial f}{\partial y}## exist at the origin.
     
  12. Oct 12, 2014 #11

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    It fails to be continuous because there exist paths to the origin which produce different limits. But a partial derivative means keeping one of the variables constant, so the 'paths' for these are parallel to the axes only. On those paths, the function has a limit of zero at the origin, consistent with the value there.
     
  13. Oct 12, 2014 #12

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    You seem to be assuming if all the partial derivatives of a function exist at a point, the function is differentiable at that point. This isn't the case.
     
  14. Oct 12, 2014 #13

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    The phrasing tells you what you are supposed to be looking for - you are not asked if the function is differentiable everywhere, only if it has "a well defined derivative" everywhere - then the statement tells you what it means by "well defined derivative".

    So - if you want to say that it does not have well defined derivatives everywhere, in the sense stated, then you should prove that by showing that one or other partial does not exist somewhere. Have you tried that?

    Note: the two statements ("f is differentiable everywhere", and "f'x, f'y exist everywhere") may be equivalent - but since you are unsure you should check it out.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: How do you know a function is well defined?
Loading...