MHB How do you nondimensionalize an equation with substituted variables?

  • Thread starter Thread starter jessicamorgan
  • Start date Start date
jessicamorgan
Messages
5
Reaction score
0
https://uploads.tapatalk-cdn.com/20170308/8af62c27e7d7b4f0f42493aa98c8a5a1.jpg
https://uploads.tapatalk-cdn.com/20170308/d3e5438f19ae4ba0910a2ffa52b9ff42.jpg

For this question I have substituted feta and t into the equation, but am unsure what to do after that. Please can anyone point me in the right direction. Thanks :)
 
Physics news on Phys.org
After doing the chain rule and substituting in, I get
$$\frac{1}{\beta^2} \, \frac{d^2 \tilde{\theta}_i}{d\tilde{t}^2}=\frac{k}{I}\left( \tilde{\theta}_{i-1}-2\tilde{\theta}_i+\tilde{\theta}_{i+1} \right).$$
Is that what you get?
 
Hi, yes but still am unsure what alpha and beta can be. As k=I=1. so can alpha and beta just =1 also without loss of generality.
 
Ackbach said:
After doing the chain rule and substituting in, I get
$$\frac{1}{\beta^2} \, \frac{d^2 \tilde{\theta}_i}{d\tilde{t}^2}=\frac{k}{I}\left( \tilde{\theta}_{i-1}-2\tilde{\theta}_i+\tilde{\theta}_{i+1} \right).$$
Is that what you get?

Actually, I'm not getting that .. please can you explain to me how you've used the chain rule here :)
 
jessicamorgan said:
Actually, I'm not getting that .. please can you explain to me how you've used the chain rule here :)

Sure! So you've got $\theta_i = \alpha \tilde{\theta}_i$ and $t=\beta \tilde{t}$. In order to substitute into the original DE, we need to assemble the ingredients listed. That is, we need $\dfrac{d^2\theta_i}{dt^2}, \; \theta_{i-1},\; \theta_i,\;$ and $\theta_{i+1}$. The $\theta_j$'s are all fairly straight-forward according to $\theta_i = \alpha \tilde{\theta}_i$ formula:
\begin{align*}
\theta_i&=\alpha\tilde{\theta}_i \\
\theta_{i-1}&=\alpha\tilde{\theta}_{i-1} \\
\theta_{i+1}&=\alpha\tilde{\theta}_{i+1}.
\end{align*}
Now then, we need the second derivative. Whenever I need to do a second derivative change-of-variables like this, I always do it one step at a time - I make fewer mistakes that way. Note that, since $\beta>0$, we have that $\tilde{t}=\dfrac{t}{\beta}$. So get the first derivative first:
$$\frac{d\theta_i}{dt}=\frac{d\theta_i}{d\tilde{t}} \, \frac{d\tilde{t}}{dt}=\frac{d\theta_i}{d\tilde{t}} \, \frac{1}{\beta}.$$
To get the second derivative, we differentiate this equation on both sides with respect to $t$, and get:
$$\frac{d^2\theta_i}{dt^2}=\frac{d}{dt} \, \frac{d\theta_i}{dt}=\frac{d}{dt} \left[ \frac{d\theta_i}{d\tilde{t}} \, \frac{1}{\beta} \right] =\frac{1}{\beta} \left[ \frac{d}{d\tilde{t}} \, \frac{d\theta_i}{d\tilde{t}} \right] \frac{d\tilde{t}}{dt}
=\frac{1}{\beta^2} \, \frac{d^2\theta_i}{d\tilde{t}^2}.$$
So that handles the $t$ to $\tilde{t}$ conversion. To get the $\theta_i$ to $\tilde{\theta}_i$ conversion is very similar, actually:
$$\frac{d\tilde{\theta}_i}{d\tilde{t}}=\frac{d\tilde{\theta}_i}{d\theta_i} \, \frac{d\theta_i}{d\tilde{t}}=\frac{1}{\alpha}\, \frac{d\theta_i}{d\tilde{t}}.$$
Doing the next derivative will get you (you can fill in the details)
$$\frac{d^2\tilde{\theta}_i}{d\tilde{t}^2}=\frac{1}{\alpha^2} \, \frac{d^2\theta_i}{d\tilde{t}^2}.$$

Does that help with the conversion?

Now, at the end, you need to compare what you get with the conversion, which is
$$\frac{1}{\beta^2} \, \frac{d^2 \tilde{\theta}_i}{d\tilde{t}^2}=\frac{k}{I}\left( \tilde{\theta}_{i-1}-2\tilde{\theta}_i+\tilde{\theta}_{i+1} \right),$$
to what you want, which is
$$\frac{d^2 \tilde{\theta}_i}{d\tilde{t}^2}=\tilde{\theta}_{i-1}-2\tilde{\theta}_i+\tilde{\theta}_{i+1}.$$
Can you make those fractions go away? If so, how?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top