MHB How do you prove that a function is bijective?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Function
AI Thread Summary
To prove that the function f: (0, ∞) → (0, ∞) defined by f(x) = x^2 is bijective, it is first established as injective by showing that if f(a) = f(b), then a must equal b. For surjectivity, it is necessary to demonstrate that for every y in (0, ∞), there exists an x in (0, ∞) such that y = x^2, which can be achieved by defining a right-inverse function g(x) = √x. This approach emphasizes the importance of the function's domain and co-domain in determining its properties. The discussion also highlights how changing these parameters can affect the function's injectivity and surjectivity. Understanding these concepts is essential for proving a function's bijectiveness.
Guest2
Messages
192
Reaction score
0
Suppose I want to prove that the function $f: (0, \infty) \to (0, \infty)$ defined by $f(x) = x^2$ is bijective.

Let $a, b \in (0, \infty)$ and $f(a) = f(b)$. Then $a^2 = b^2 \implies a = b$ since everything is non-negative we can simply take square roots. Therefore $f$ is injective. To prove that $f$ is surjective, let $y \in (0, \infty)$. How do I prove that there's $x \in (0, \infty)$ such that $y=x^2$?
 
Mathematics news on Phys.org
I believe that follows from the definition of the function.
 
One way to prove a function $f:A \to B$ is surjective, is to define a function $g:B \to A$ such that $f\circ g = 1_B$, that is, show $f$ has a right-inverse.

Equivalently, we must show for all $b \in B$, that $f(g(b)) = b$. Beware! This does NOT mean that $g(f(a)) = a$, in fact this is usually untrue (unless $f$ is injective).

In this case, we may take $g(x) = \sqrt{x}$, which works BECAUSE OF THE DOMAINS of $f$ and $g$ (non-negative reals).

Investigate which (injectivity or surjectivity, or both) fails if we change the domain, or co-domain, like so:

$f: \Bbb R \to [0,\infty)$ given by $f(x) = x^2$

$f: \Bbb R \to \Bbb R$ given by $f(x) = x^2$.

Perhaps this will persuade you that the properties of a function do not depend just on its "rule of computation".
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top