While solving a problem involving equilibrium positions of charges on a line, I came up with a recurrence relation which is nonlinear, and moreover implicitly defined. Here it is: [itex]x_{0}=0[/itex] and [itex]\sum^{n-1}_{i=0} \frac{1}{(x_{n}-x_{i})^{2}} = 1[/itex]. I should also mention that [itex]0 \leq x_{n}< x_{n+1}[/itex] for all [itex]n[/itex].(adsbygoogle = window.adsbygoogle || []).push({});

I can't even find an explicit expression for [itex]x_{n}[/itex] as a function of the previous terms, let alone as a function of [itex]n[/itex]. I've dealt with linear recurrences before, but how would I go about solving a nonlinear recurrence like this? Is it even possible to find a closed-form expression using elementary functions? If an exact solution is impossible, is there some way to get a numerical approximation?

Any help would be greatly appreciated.

Thank You in Advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How do you solve a nonlinear recurrence relation?

**Physics Forums | Science Articles, Homework Help, Discussion**