1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How do you solve degeneracy for 2-D particle in a box?

  1. Mar 12, 2012 #1
    1. The problem statement, all variables and given/known data

    What is the degeneracy of the energy level E =65 E0 of the two dimensional particle in a box?
    Answer

    2. Relevant equations

    E=(h_^2/8mL^2)*(nx^2+ny^2)--> I think we use this eq.


    3. The attempt at a solution
     
  2. jcsd
  3. Mar 12, 2012 #2
    As far as I can tell, it's basically a mathematical question - you need to find the number of combinations of integers n1 and n2 such that n12 + n22 = 65 * 2 (I think the 2 should be there since for the ground state energy n1 = n2 = 1).
     
  4. Mar 12, 2012 #3
    Assuming E0 is the zero point energy, you need to determine how many solutions there are to the equation

    [tex] E_0 \left(\frac{8mL^2}{h^2}\right) = n_x^2 + n_y^2 = 2(65)[/tex]

    where n_x and n_y are positive integers. For example, one solution would be n_x = 9 and n_y = 7, so obviously n_x = 7 and n_y = 9 is also a solution, so the degeneracy is at LEAST 2. You just need to find all possible solutions, and then count them.

    Fortunately the guess and test method works easily for this problem. You could solve it graphically, but the integers are so small I think it's easier to just guess here.
     
  5. Mar 12, 2012 #4
    Thank you everyone! I figured it out some time ago! I was just not thinking at the time :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: How do you solve degeneracy for 2-D particle in a box?
  1. Particle in a 2-D box (Replies: 1)

Loading...