MHB How Do You Solve Exercises Involving 2D and 3D Vectors and Dot Product?

  • Thread starter Thread starter Kalbaan
  • Start date Start date
  • Tags Tags
    Planes Vectors
Kalbaan
Messages
2
Reaction score
0
Hey!

I just joined the forum, but would like to get some help with 2D&3D vectors and dot product. I missed some classes due to a bad illness and now can't get the hang of it at all..
Would appreciate it alot, if someone could explain me how to solve these 5 exercises.
View attachment 1783
 

Attachments

  • LinearAlgebra.png
    LinearAlgebra.png
    17.2 KB · Views: 92
Physics news on Phys.org
Some hints:

a) Can you think of a way to use the dot product here?

b) If two vectors are of equal magnitude, but opposite direction, their vector sum is 0. Why is this relevant?

c) We have the 3 equations:

$3\lambda + 3\mu + 1 = x$

$-\lambda + 2\mu - 1 = y$

$4\lambda - 2 = z$

By multiplying equations (1) and (2) by suitable integers, can you eliminate $\mu$? Then try to use that equation and equation 3 to eliminate $\lambda$.

d) Such a line should be parallel to $v$, right?

e) Think about what the direction vectors of such a plane have to be...
 
Thanks alot! You made my week mate!
Got the hang of them with your hints and my teachers powerpoint shows.
 
There is another way of finding an equation of a plane in (c) and (e): an equation of the plane perpendicular to $(A,B,C)$ and passing through $(x_0.y_0,z_0)$ is $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, or $Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top