How Do You Solve the Differential Equation dy/dx = 1 - y^2?

Click For Summary

Homework Help Overview

The discussion revolves around solving the differential equation dy/dx = 1 - y^2, which falls under the subject area of differential equations. Participants are exploring various methods to approach the problem, particularly focusing on separation of variables and integration techniques.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss different methods for separating variables and integrating both sides. Some express confusion regarding their approaches, particularly in the context of partial fractions and integration. There are also attempts to clarify the decomposition of terms and the integration process.

Discussion Status

Several participants have provided guidance on the separation of variables method, suggesting that all y-related terms should be on one side and x-related terms on the other. There is acknowledgment of different interpretations and approaches being explored, with some participants indicating they need to revisit their earlier steps for clarity.

Contextual Notes

Some participants mention constraints related to the marking scheme, which emphasizes separation of variables, and express uncertainty about the values of constants in their solutions. There is also a note of missing information that could affect the clarity of the discussion.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
See attached
Relevant Equations
understanding of integration and separation of variables.
This is the question;

1640349320134.png
This is the solution;
1640349379745.png


Find my approach here,

##x####\frac {dy}{dx}##=##1-y^2##
→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##
I let ##u=1-y^2## → ##du=-2ydy##, therefore;
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{-2yu}##, we know that ##y##=##\sqrt {1-u}##
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{-2u\sqrt {1-u}}## i let,
##\frac {1}{u\sqrt {1-u}}##=##\frac {A}{\sqrt {1-u}}##+##\frac {B}{u}##
→##1=##Au##+##B##\sqrt {1-u}##
##A=0.5## and ##B=0.5## * i need to check how to arrive at this...i got a bit stuck here...
Therefore,
##\frac {1}{-2}##[##\int####\frac {0.5}{\sqrt {1-u}}####du##+##\int####\frac {0.5}{u}]####du##=##\int ####\frac {dx}{x}##
##\frac {1}{-4}####\int####\frac {1}{\sqrt {1-u}}####du##+##\frac {1}{-4}####\int####\frac {1}{u}####du##=##\int ####\frac {dx}{x}##
on integration we shall have,
##-0.25(1-(1-y^2))-0.25 ln|1-y^2|##=##ln|x|## + ##k##
##-0.25y^2-0.25ln|1-y^2|##=##ln|x|## + ##k##
using and applying the initial conditions ##y(2)=0##, we get,
##k=-ln2##

i will need to re check this later...something does not look right...i will amend this post to correct solution then look at the suggested approach...
 
Last edited:
Physics news on Phys.org
2\frac{dy}{1-y^2}=\frac{dy}{1-y}+\frac{dy}{1+y}
 
  • Like
Likes   Reactions: chwala
Hello @chwala !

Your marking scheme wants separation of variables. I empathically suggest you try that: all ##y ## stuff on the left and all ##x## stuff on the right !

Then @anuttarasammyak's giveaway should help you integrate both sides.

##\ ##
 
Last edited:
  • Like
Likes   Reactions: chwala
BvU said:
Hello @chwala !

Your marking scheme wants separation of variables. I empathically suggest you try that: all ##y ## stuff on the left and all ##x## stuff on the right !

Then @anuttarasammyak's giveaway should help you integrate both sides.
I suppose he/she means $$\frac{1}{1-y^2}=\frac{1}{1-y}+\frac{1}{1+y}\quad ?$$

##\ ##
True, arrrrgh my brain went for a walk:biggrin::biggrin:...difference of two squares right is much faster,i will nevertheless try and complete on what i had started. My presumption is that we should get same solution.
 
I tend to think my approach was wrong,...it would be difficult to ascertain the values of the constants after having decomposed into the partial fractions...the unknowns in my working are ##3## variables, ##A,B## and ##u##...
Thanks bvu and anuttarasa... with the given suggested approach, then the working to solution would be easy. Cheers guys
 
Ok from this step, i have

##x####\frac {dy}{dx}##=##1-y^2##

→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##

##\int ####\frac {dx}{x}##=##\int ####\frac {dy}{({1+y})({1-y})}##

Let, ##\frac {1}{({1+y})({1-y})}##=##\frac {A}{1-y}##+##\frac {B}{1+y}##

##1=A(1+y)+B(1-y)##

→We get the simultaneous equation,
##A+B=1##
##A-B=0##

##A=0.5## and ##B=0.5## therefore we shall have

##\int ####\frac {dx}{x}##=##\int ####\frac {0.5dy}{1-y}##+##\int ####\frac {0.5dy}{1+y}##

...on integration we get,

##\frac {1}{2}####ln|1+y|####-\frac {1}{2}####ln|1-y|##=##ln|x|##+##k##

on applying ##y(2)=0##,

we get ##k##=##-ln|2|## therefore,

##\frac {1}{2}####ln|1+y|####-\frac {1}{2}####ln|1-y|##=##ln|x|####-ln|2|##

##\frac {1}{2}####ln####\frac {|1+y|}{|1-y|}##=##ln####\frac {|x|}{|2|}##→

→...##\frac {1+y}{1-y}##=##\frac {x^2}{4}##

##4y+x^2y=x^2-4##

##y(4+x^2)=x^2-4##

##y##=##\frac {x^2-4}{x^2+4}##
 
Last edited:
chwala said:
Ok from this step, i have
##x####\frac {dy}{dx}##=##1-y^2##
→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{1-y}####⋅####\frac {dy}{1+y}## ?:)?:)?:)
Let, ##\frac {1}{({1+y})({1-y})}##=

About to run off the rails ... :nb)
First: see the repaired #2 for a missing 2.
Second: the integral of a sum is a sum of integrals, not a product !

##\ ##
 
  • Haha
Likes   Reactions: chwala
BvU said:
About to run off the rails ... :nb)
First: see the repaired #2 for a missing 2.
Second: the integral of a sum is a sum of integrals, not a product !

##\ ##
still posting...learning latex slowly...thanks bvu..merry xmas.
 
Merry xmas to you too ! Actually, we all should have better things to do at this moment, but PF is a bit of an addiction :biggrin:

##\ ##
 
  • Like
Likes   Reactions: chwala
  • #10
on integration i am getting,
chwala said:
##\frac {1}{2}####ln|1+y|##-##\frac {1}{2}####ln|1-y|##=##ln|x|##+##k##
on applying ##y(2)=0##,
we get ##k##=##-ln|2|## therefore,
##\frac {1}{2}####ln|1+y|##-##\frac {1}{2}####ln|1-y|##=##ln|x|##+##-ln|2|##
##\frac {1}{2}####ln####\frac {|1+y|}{|1-y|}##=##ln####\frac {|x|}{|2|}##

chwala said:
learning latex slowly...
It's the only way !
Tips (unasked for :rolleyes:, but I can't help it :wink: ):
  • omit all the quadruple #### -- it makes it easier to read for you (and to copy for others :biggrin: ).
  • Once expressions get a little bigger, displayed math (enclosed in $$) improves readability
and, sure enough, once things are put back on the rails, your proceed well, up to

$$ {{1+y}\over {1-y}} = {x^2\over 4}$$ where a new derailing occurs ...

##\ ##
 
  • Like
Likes   Reactions: chwala
  • #11
The result is now impeccable ! Scrap the last part of #10 !
$$y=\frac {x^2-4}{x^x+4}$$:partytime:Bingo !:partytime:
 
  • #12
Bingo!Merry xmas guys...Going for a cup of coffee at the restaurant:cool::cool::cool:
 
  • #13
Review integration by partial fractions for the integral involving y.
 

Similar threads

Replies
19
Views
2K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 14 ·
Replies
14
Views
1K