How Do You Solve the Differential Equation dy/dx = 1 - y^2?

Click For Summary
SUMMARY

The forum discussion focuses on solving the differential equation dy/dx = 1 - y^2 using separation of variables and integration techniques. The participants explore various methods, including the substitution u = 1 - y^2 and partial fraction decomposition. The final solution derived is y = (x^2 - 4) / (x^2 + 4), confirmed through integration and application of initial conditions. The discussion emphasizes the importance of correctly applying integration techniques and the use of LaTeX for clarity in mathematical expressions.

PREREQUISITES
  • Understanding of differential equations, specifically separation of variables.
  • Familiarity with integration techniques, including partial fractions.
  • Knowledge of LaTeX for formatting mathematical expressions.
  • Ability to apply initial conditions to find constants in solutions.
NEXT STEPS
  • Review integration by partial fractions for complex integrals.
  • Learn advanced techniques in solving differential equations, such as integrating factors.
  • Explore the implications of initial conditions in differential equations.
  • Practice using LaTeX for clearer presentation of mathematical solutions.
USEFUL FOR

Students and educators in mathematics, particularly those studying differential equations, as well as anyone interested in improving their integration skills and mathematical presentation using LaTeX.

chwala
Gold Member
Messages
2,828
Reaction score
420
Homework Statement
See attached
Relevant Equations
understanding of integration and separation of variables.
This is the question;

1640349320134.png
This is the solution;
1640349379745.png


Find my approach here,

##x####\frac {dy}{dx}##=##1-y^2##
→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##
I let ##u=1-y^2## → ##du=-2ydy##, therefore;
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{-2yu}##, we know that ##y##=##\sqrt {1-u}##
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{-2u\sqrt {1-u}}## i let,
##\frac {1}{u\sqrt {1-u}}##=##\frac {A}{\sqrt {1-u}}##+##\frac {B}{u}##
→##1=##Au##+##B##\sqrt {1-u}##
##A=0.5## and ##B=0.5## * i need to check how to arrive at this...i got a bit stuck here...
Therefore,
##\frac {1}{-2}##[##\int####\frac {0.5}{\sqrt {1-u}}####du##+##\int####\frac {0.5}{u}]####du##=##\int ####\frac {dx}{x}##
##\frac {1}{-4}####\int####\frac {1}{\sqrt {1-u}}####du##+##\frac {1}{-4}####\int####\frac {1}{u}####du##=##\int ####\frac {dx}{x}##
on integration we shall have,
##-0.25(1-(1-y^2))-0.25 ln|1-y^2|##=##ln|x|## + ##k##
##-0.25y^2-0.25ln|1-y^2|##=##ln|x|## + ##k##
using and applying the initial conditions ##y(2)=0##, we get,
##k=-ln2##

i will need to re check this later...something does not look right...i will amend this post to correct solution then look at the suggested approach...
 
Last edited:
Physics news on Phys.org
2\frac{dy}{1-y^2}=\frac{dy}{1-y}+\frac{dy}{1+y}
 
  • Like
Likes   Reactions: chwala
Hello @chwala !

Your marking scheme wants separation of variables. I empathically suggest you try that: all ##y ## stuff on the left and all ##x## stuff on the right !

Then @anuttarasammyak's giveaway should help you integrate both sides.

##\ ##
 
Last edited:
  • Like
Likes   Reactions: chwala
BvU said:
Hello @chwala !

Your marking scheme wants separation of variables. I empathically suggest you try that: all ##y ## stuff on the left and all ##x## stuff on the right !

Then @anuttarasammyak's giveaway should help you integrate both sides.
I suppose he/she means $$\frac{1}{1-y^2}=\frac{1}{1-y}+\frac{1}{1+y}\quad ?$$

##\ ##
True, arrrrgh my brain went for a walk:biggrin::biggrin:...difference of two squares right is much faster,i will nevertheless try and complete on what i had started. My presumption is that we should get same solution.
 
I tend to think my approach was wrong,...it would be difficult to ascertain the values of the constants after having decomposed into the partial fractions...the unknowns in my working are ##3## variables, ##A,B## and ##u##...
Thanks bvu and anuttarasa... with the given suggested approach, then the working to solution would be easy. Cheers guys
 
Ok from this step, i have

##x####\frac {dy}{dx}##=##1-y^2##

→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##

##\int ####\frac {dx}{x}##=##\int ####\frac {dy}{({1+y})({1-y})}##

Let, ##\frac {1}{({1+y})({1-y})}##=##\frac {A}{1-y}##+##\frac {B}{1+y}##

##1=A(1+y)+B(1-y)##

→We get the simultaneous equation,
##A+B=1##
##A-B=0##

##A=0.5## and ##B=0.5## therefore we shall have

##\int ####\frac {dx}{x}##=##\int ####\frac {0.5dy}{1-y}##+##\int ####\frac {0.5dy}{1+y}##

...on integration we get,

##\frac {1}{2}####ln|1+y|####-\frac {1}{2}####ln|1-y|##=##ln|x|##+##k##

on applying ##y(2)=0##,

we get ##k##=##-ln|2|## therefore,

##\frac {1}{2}####ln|1+y|####-\frac {1}{2}####ln|1-y|##=##ln|x|####-ln|2|##

##\frac {1}{2}####ln####\frac {|1+y|}{|1-y|}##=##ln####\frac {|x|}{|2|}##→

→...##\frac {1+y}{1-y}##=##\frac {x^2}{4}##

##4y+x^2y=x^2-4##

##y(4+x^2)=x^2-4##

##y##=##\frac {x^2-4}{x^2+4}##
 
Last edited:
chwala said:
Ok from this step, i have
##x####\frac {dy}{dx}##=##1-y^2##
→##\frac {dx}{x}##=##\frac {dy}{1-y^2}##
##\int ####\frac {dx}{x}##=##\int ####\frac {du}{1-y}####⋅####\frac {dy}{1+y}## ?:)?:)?:)
Let, ##\frac {1}{({1+y})({1-y})}##=

About to run off the rails ... :nb)
First: see the repaired #2 for a missing 2.
Second: the integral of a sum is a sum of integrals, not a product !

##\ ##
 
  • Haha
Likes   Reactions: chwala
BvU said:
About to run off the rails ... :nb)
First: see the repaired #2 for a missing 2.
Second: the integral of a sum is a sum of integrals, not a product !

##\ ##
still posting...learning latex slowly...thanks bvu..merry xmas.
 
Merry xmas to you too ! Actually, we all should have better things to do at this moment, but PF is a bit of an addiction :biggrin:

##\ ##
 
  • Like
Likes   Reactions: chwala
  • #10
on integration i am getting,
chwala said:
##\frac {1}{2}####ln|1+y|##-##\frac {1}{2}####ln|1-y|##=##ln|x|##+##k##
on applying ##y(2)=0##,
we get ##k##=##-ln|2|## therefore,
##\frac {1}{2}####ln|1+y|##-##\frac {1}{2}####ln|1-y|##=##ln|x|##+##-ln|2|##
##\frac {1}{2}####ln####\frac {|1+y|}{|1-y|}##=##ln####\frac {|x|}{|2|}##

chwala said:
learning latex slowly...
It's the only way !
Tips (unasked for :rolleyes:, but I can't help it :wink: ):
  • omit all the quadruple #### -- it makes it easier to read for you (and to copy for others :biggrin: ).
  • Once expressions get a little bigger, displayed math (enclosed in $$) improves readability
and, sure enough, once things are put back on the rails, your proceed well, up to

$$ {{1+y}\over {1-y}} = {x^2\over 4}$$ where a new derailing occurs ...

##\ ##
 
  • Like
Likes   Reactions: chwala
  • #11
The result is now impeccable ! Scrap the last part of #10 !
$$y=\frac {x^2-4}{x^x+4}$$:partytime:Bingo !:partytime:
 
  • #12
Bingo!Merry xmas guys...Going for a cup of coffee at the restaurant:cool::cool::cool:
 
  • #13
Review integration by partial fractions for the integral involving y.
 

Similar threads

Replies
19
Views
2K
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K