How Do You Write the Neutrino Mixing Matrix Us from Equations 3 and 4?

  • Context: Graduate 
  • Thread starter Thread starter SuperStringboy
  • Start date Start date
  • Tags Tags
    Matrix Mixing Neutrino
Click For Summary
SUMMARY

The discussion focuses on constructing the neutrino mixing matrix \( U_s \) using the rotation matrices derived from the SO(5) rotation group as outlined in equations 3 and 4 of the paper referenced (arXiv:0707.2481v1). The user initially encountered issues with sign discrepancies in the matrix formulation. The solution provided involves transposing each rotation matrix before multiplication to ensure the correct signs are applied. The final output is a complex matrix that represents the mixing angles and phases accurately.

PREREQUISITES
  • Understanding of SO(5) rotation group and its applications in particle physics
  • Familiarity with matrix operations and transposition
  • Basic knowledge of Mathematica for implementing rotation matrices
  • Comprehension of neutrino mixing and related mathematical formulations
NEXT STEPS
  • Study the properties of the SO(5) rotation group in detail
  • Learn how to implement matrix transposition in Mathematica
  • Explore the implications of neutrino mixing matrices in particle physics
  • Investigate the derivation of rotation matrices for higher-dimensional groups
USEFUL FOR

Physicists, particularly those specializing in particle physics and neutrino research, as well as mathematicians interested in group theory applications in physics.

SuperStringboy
Messages
74
Reaction score
0
Please look at equation 3 and 4 of this paper

http://arxiv.org/abs/0707.2481v1

I am facing problem to write the matrix Us

Can anybody help me to write the complete matrix?
 
Physics news on Phys.org
I think I understand how to write it, but I feel like I'm getting some different minus signs. Basically you want the SO(5) rotation group, and matrices for one direction about another (plane, or whatever its called).

If you look at http://reference.wolfram.com/mathematica/ref/RotationMatrix.html
Under Applications, they show how to generate the matrix form for a rotation in SO[N]. Then you take these and multiply them how they have it in the paper, order obviously matters.

I do:
Code:
SO[n_] := Map[RotationMatrix[\[Theta], #] &,    Subsets[Table[UnitVector[n, i], {i, n}], {2}]];
SO5MAP = Map[ MatrixForm, SO[5]];
\[Theta][a_, b_] := Subscript[\[CapitalTheta], a, b]
R12 = SO5MAP[[1]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 2]};
R13 = SO5MAP[[2]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 3]};
R23 = SO5MAP[[5]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 3]};
R14 = SO5MAP[[3]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 4]};
R15 = SO5MAP[[4]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      1, 5]};
R24 = SO5MAP[[6]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 4]};
R25 = SO5MAP[[7]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      2, 5]};
R34 = SO5MAP[[8]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 4]};
R35 = SO5MAP[[9]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      3, 5]};
R45 = SO5MAP[[10]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][      4, 5]};
ROT = R45.(R35.(R34.(R25.(R24.(R15.(R14.(R23.(R13.R12))))))));
ROT /. {Cos[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[c, a, b],     Sin[Subscript[\[CapitalTheta], a_, b_]] -> Subscript[s, a, b]} //   Simplify // MatrixForm

The output looks like

<br /> \left(<br /> \begin{array}{ccccc}<br /> c_{1,2} c_{1,3} c_{1,4} c_{1,5} &amp; -c_{1,3} c_{1,4} c_{1,5} s_{1,2} &amp; -c_{1,4} c_{1,5} s_{1,3} &amp; -c_{1,5} s_{1,4} &amp; -s_{1,5} \\<br /> c_{2,3} c_{2,4} c_{2,5} s_{1,2}-c_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) &amp; c_{1,2} c_{2,3} c_{2,4} c_{2,5}+s_{1,2} \left(c_{2,4} c_{2,5} s_{1,3} s_{2,3}+c_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right)\right) &amp; -c_{1,3} c_{2,4} c_{2,5} s_{2,3}+s_{1,3} \left(c_{2,5} s_{1,4} s_{2,4}+c_{1,4} s_{1,5} s_{2,5}\right) &amp; -c_{1,4} c_{2,5} s_{2,4}+s_{1,4} s_{1,5} s_{2,5} &amp; -c_{1,5} s_{2,5} \\<br /> c_{3,5} \left(s_{1,2} \left(c_{3,4} s_{2,3}-c_{2,3} s_{2,4} s_{3,4}\right)+c_{1,2} \left(c_{2,3} c_{3,4} s_{1,3}+\left(-c_{1,3} c_{2,4} s_{1,4}+s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}\right)\right)-\left(c_{1,2} c_{1,3} c_{1,4} c_{2,5} s_{1,5}+\left(c_{2,3} c_{2,4} s_{1,2}-c_{1,2} \left(c_{2,4} s_{1,3} s_{2,3}+c_{1,3} s_{1,4} s_{2,4}\right)\right) s_{2,5}\right) s_{3,5} &amp; c_{3,5} \left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right)-\left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right) s_{3,5} &amp; s_{1,3} \left(c_{2,4} c_{3,5} s_{1,4} s_{3,4}+\left(c_{1,4} c_{2,5} s_{1,5}-s_{1,4} s_{2,4} s_{2,5}\right) s_{3,5}\right)+c_{1,3} \left(c_{2,3} c_{3,4} c_{3,5}+s_{2,3} \left(c_{3,5} s_{2,4} s_{3,4}+c_{2,4} s_{2,5} s_{3,5}\right)\right) &amp; c_{2,5} s_{1,4} s_{1,5} s_{3,5}+c_{1,4} \left(-c_{2,4} c_{3,5} s_{3,4}+s_{2,4} s_{2,5} s_{3,5}\right) &amp; -c_{1,5} c_{2,5} s_{3,5} \\<br /> c_{4,5} \left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right)-\left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right) s_{4,5} &amp; c_{4,5} \left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right)-\left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} &amp; c_{4,5} \left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right)-\left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right) s_{4,5} &amp; c_{2,5} c_{3,5} s_{1,4} s_{1,5} s_{4,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5} s_{4,5}+c_{2,4} \left(c_{3,4} c_{4,5}+s_{3,4} s_{3,5} s_{4,5}\right)\right) &amp; -c_{1,5} c_{2,5} c_{3,5} s_{4,5} \\<br /> c_{4,5} \left(s_{1,2} \left(c_{3,4} s_{2,3} s_{3,5}+c_{2,3} \left(c_{2,4} c_{3,5} s_{2,5}-s_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,2} \left(s_{1,3} \left(-c_{2,4} c_{3,5} s_{2,3} s_{2,5}+\left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right) s_{3,5}\right)+c_{1,3} \left(c_{1,4} c_{2,5} c_{3,5} s_{1,5}-s_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)\right)\right)+\left(s_{1,2} \left(c_{2,3} c_{3,4} s_{2,4}+s_{2,3} s_{3,4}\right)+c_{1,2} \left(c_{1,3} c_{2,4} c_{3,4} s_{1,4}+s_{1,3} \left(-c_{3,4} s_{2,3} s_{2,4}+c_{2,3} s_{3,4}\right)\right)\right) s_{4,5} &amp; c_{4,5} \left(c_{3,5} \left(c_{2,4} \left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,5}+c_{1,3} s_{1,2} \left(-c_{1,4} c_{2,5} s_{1,5}+s_{1,4} s_{2,4} s_{2,5}\right)\right)+\left(c_{1,2} c_{3,4} s_{2,3}+s_{1,2} \left(c_{1,3} c_{2,4} s_{1,4}-s_{1,3} s_{2,3} s_{2,4}\right) s_{3,4}-c_{2,3} \left(c_{3,4} s_{1,2} s_{1,3}+c_{1,2} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(c_{3,4} \left(-c_{1,3} c_{2,4} s_{1,2} s_{1,4}+\left(c_{1,2} c_{2,3}+s_{1,2} s_{1,3} s_{2,3}\right) s_{2,4}\right)+\left(-c_{2,3} s_{1,2} s_{1,3}+c_{1,2} s_{2,3}\right) s_{3,4}\right) s_{4,5} &amp; c_{4,5} \left(c_{3,5} \left(-c_{1,4} c_{2,5} s_{1,3} s_{1,5}+\left(-c_{1,3} c_{2,4} s_{2,3}+s_{1,3} s_{1,4} s_{2,4}\right) s_{2,5}\right)+\left(c_{2,4} s_{1,3} s_{1,4} s_{3,4}+c_{1,3} \left(c_{2,3} c_{3,4}+s_{2,3} s_{2,4} s_{3,4}\right)\right) s_{3,5}\right)+\left(-c_{3,4} \left(c_{2,4} s_{1,3} s_{1,4}+c_{1,3} s_{2,3} s_{2,4}\right)+c_{1,3} c_{2,3} s_{3,4}\right) s_{4,5} &amp; -c_{4,5} \left(c_{2,5} c_{3,5} s_{1,4} s_{1,5}+c_{1,4} \left(c_{3,5} s_{2,4} s_{2,5}+c_{2,4} s_{3,4} s_{3,5}\right)\right)+c_{1,4} c_{2,4} c_{3,4} s_{4,5} &amp; c_{1,5} c_{2,5} c_{3,5} c_{4,5}<br /> \end{array}<br /> \right)<br />

again, I am not sure where there is a sign difference.
 
Thanks a loooooooooooot ! :)
 
Ah actually what you need to do is take the transpose of each of those matrices, then you get what's right:

R12 = Transpose[SO5MAP[[1]]] /. {MatrixForm[x_] :> x} /. { \[Theta] -> \[Theta][1, 2]};

The transpose is what you want, and then apply those in order. The signs will be correct then.
 
Thanks again. I realized that too. So did not check recently.
 

Similar threads

  • · Replies 16 ·
Replies
16
Views
6K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
725
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K