The originator of the thread has read about the operation of a flash memory device. It is comprised of multiple memory cells built into a memory card.
Each memory cell has an NMOS NPN transistor, a control gate, and a floating gate surrounded by an insulating layer. When a write operation is performed, the control gate is designed to deliver a voltage that is higher than the voltage it uses during a read operation and when this happens the current that the control gate will switch on will be increased. Some of the high energy electrons that result from the higher amount of current passing from the source terminal to the drain terminal will tunnel through the insulating layer and be absorbed by the floating gate which can act like a capacitive plate that can absorb electrical charge. This type of method for placing charge into the floating gate is called hot-electron injection.
source:
http://en.wikipedia.org/wiki/Flash_memory#Principles_of_operation
Now there are questions regarding the operation of this device:
1.) To erase information, an elevated voltage of opposite polarity is applied and this causes the electrons in the floating gate to tunnel out of the gate and go into the NMOS transistor. The question is how can a transistor operate on an opposite polarity when the current it is switching on is coming from a DC power supply that has a fixed polarity? And what physical interaction between the NMOS transistor and the floating gate causes the reverse voltage to cause the electrons from the floating gate to tunnel out of it?
2.) When an operation is performed on a specific memory cell to either set the floating gate to a logical '0' or '1', how does the memory card know that that cell is not already at logical '0' or '1'? Does it read the cell first to check the information contained within it?
3.) A floating gate that is charged with electricity will block the current coming from the control gate so that it cannot switch on the transistor unless it surpasses the now increased threshold voltage. Does the electric field of an electrically charged material interfere with the flow of electrical current?
4.) How is information read in a flash memory device? Does it use an IC implemented as a jump counter that can switch connections from one cell to another every time an electrical pulse enters it, enabling multiple cells to be read one by one to generate an output signal?
5.) The thread originator has built a circuit that uses an IC implemented as a jump counter where every time an electrical pulse enters the control terminal of the device, it switches the electrical connections from one output terminal to another. To verify the operation of the circuit, LED's were connected to each output pin so that every time a connection was switched, a different LED was lit. So the thread originator knows how to connect a circuit that can implement a jump counter but how does a jump counter work? What type of electromagnetic phenomena causes the jump counter to electronically switch from one output terminal to the next one?
6.) Does the RAM card use the same type of technology as flash memory but with a different type of circuit configuration?